Short-term energy use prediction of solar-assisted water heating system: Application case of combined attention-based LSTM and time-series decomposition
Related publications (138)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Human motion prediction, the task of predicting future 3D human poses given a sequence of observed ones, has been mostly treated as a deterministic problem. However, human motion is a stochastic process: Given an observed sequence of poses, multiple future ...
Open-ended learning environments (OELEs) allow students to freely interact with the content and to discover important principles and concepts of the learning domain on their own. However, only some students possess the necessary skills for efficient and ef ...
Many interesting applications emerged with the increasing popularity of deep learning. This project explored natural language processing and visualization techniques as well as two neural network architectures to classify ICOs. The first network focused on ...
Speech Emotion Recognition (SER) has been shown to benefit from many of the recent advances in deep learning, including recurrent based and attention based neural network architectures as well. Nevertheless, performance still falls short of that of humans. ...
Language independent query-by-example spoken term detection (QbE-STD) is the problem of retrieving audio documents from an archive, which contain a spoken query provided by a user. This is usually casted as a hypothesis testing and pattern matching problem ...
With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia.
Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, ...
In this paper, we propose a novel temporal spiking recurrent neural network (TSRNN) to perform robust action recognition in videos. The proposed TSRNN employs a novel spiking architecture which utilizes the local discriminative features from high-confidenc ...
Human motion prediction, i.e., forecasting future body poses given observed pose sequence, has typically been tackled with recurrent neural networks (RNNs). However, as evidenced by prior work, the resulted RNN models suffer from prediction errors accumula ...
Training deep neural networks with the error backpropagation algorithm is considered implausible from a biological perspective. Numerous recent publications suggest elaborate models for biologically plausible variants of deep learning, typically defining s ...
Closure modeling based on the Mori-Zwanzig formalism has proven effective to improve the stability and accuracy of projection-based model order reduction. However, closure models are often expensive and infeasible for complex nonlinear systems. Towards eff ...