L-functionIn mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization. The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory.
Riemann hypothesisIn mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.
Dirichlet seriesIn mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet.
Riemann zeta functionThe Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century.
Dirichlet beta functionIn mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four. The Dirichlet beta function is defined as or, equivalently, In each case, it is assumed that Re(s) > 0. Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane: Another equivalent definition, in terms of the Lerch transcendent, is: which is once again valid for all complex values of s.
Dedekind zeta functionIn mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K.
Dirichlet characterIn analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus (where is a positive integer) if for all integers and : that is, is completely multiplicative. (gcd is the greatest common divisor) that is, is periodic with period . The simplest possible character, called the principal character, usually denoted , (see Notation below) exists for all moduli: The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Moment (mathematics)In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.
Second moment of areaThe second moment of area, or second area moment, or quadratic moment of area and also known as the area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an (for an axis that lies in the plane of the area) or with a (for an axis perpendicular to the plane). In both cases, it is calculated with a multiple integral over the object in question.