Publication

Concentration of particles larger than 2.5 nm collected during the Arctic Ocean 2018 expedition

Abstract

The concentration of particles larger than 2.5 nm was measured with an ultrafine condensation particle counter (UCPC). The concentration was corrected for diffusional losses in the inlet based on the neutral cluster and air ion spectrometer (NAIS) size distribution. The concentration and temporal dynamics of small particles is fundamental to characterize the first step of new particle formation (NPF) and growth. Newly formed particles can grow to larger sizes where they act as cloud condensation nuclei, directly affecting the Earth radiative budget and cloud properties. Measurements were performed on the 4th deck of icebreaker Oden during August and September 2018 along the track of the expedition. The concentration is reported as particle per cubic centimeter in 60 seconds average.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Elementary particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles, twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number electrons and other leptons, quarks, and the fundamental bosons.
Subatomic particle
In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a proton, neutron, or meson), or an elementary particle, which is not composed of other particles (for example, an electron, photon, or muon). Particle physics and nuclear physics study these particles and how they interact.
Particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos.
Show more
Related publications (94)

New Particle Formation Events Can Reduce Cloud Droplets in Boundary Layer Clouds at the Continental Scale

Athanasios Nenes, Spyros Pandis

New particle formation (NPF) substantially contributes to global cloud condensation nuclei (CCN), and their climate impacts. Individual NPF events are also thought to increase local CCN, cloud droplet number (CDN), and cloud albedo. High resolution simulat ...
Washington2024

A Method of Moments Estimator for Interacting Particle Systems and their Mean Field Limit

Andrea Zanoni, Grigorios A. Pavliotis

We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction, and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear sys ...
Siam Publications2024

Influence of Ventilation on Formation and Growth of 1-20 nm Particles via Ozone-Human Chemistry

Dusan Licina, Shen Yang, Marouane Merizak, Meixia Zhang

Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indo ...
Washington2024
Show more
Related MOOCs (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more