Concept

Representation theory of finite groups

Summary
The representation theory of groups is a part of mathematics which examines how groups act on given structures. Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. For more details, please refer to the section on permutation representations. Other than a few marked exceptions, only finite groups will be considered in this article. We will also restrict ourselves to vector spaces over fields of characteristic zero. Because the theory of algebraically closed fields of characteristic zero is complete, a theory valid for a special algebraically closed field of characteristic zero is also valid for every other algebraically closed field of characteristic zero. Thus, without loss of generality, we can study vector spaces over Representation theory is used in many parts of mathematics, as well as in quantum chemistry and physics. Among other things it is used in algebra to examine the structure of groups. There are also applications in harmonic analysis and number theory. For example, representation theory is used in the modern approach to gain new results about automorphic forms. Let be a –vector space and a finite group. A linear representation of is a group homomorphism Here is notation for a general linear group, and for an automorphism group. This means that a linear representation is a map which satisfies for all The vector space is called representation space of Often the term representation of is also used for the representation space The representation of a group in a module instead of a vector space is also called a linear representation. We write for the representation of Sometimes we use the notation if it is clear to which representation the space belongs. In this article we will restrict ourselves to the study of finite-dimensional representation spaces, except for the last chapter. As in most cases only a finite number of vectors in is of interest, it is sufficient to study the subrepresentation generated by these vectors.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood