Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In the last decade, halide perovskites have emerged as new semiconductors that revolutionize the photovoltaic field. Among this family of materials, all-inorganic halide perovskites are becoming a research paradigm because of their outstanding photophysical properties combined with the potential of long-term stabilities against moisture and thermal stresses in practical applications. By forming high-quality inorganic halide perovskite thin films and stabilizing the three-dimensional perovskite phases, in the past few years, the state-of-the-art inorganic perovskite solar cells have achieved a power conversion efficiency of 20.37% and a promising long-term operation stability. In this review, based on the latest research progress of inorganic halide perovskites for photovoltaics, we summarized (1) the crystal structural, optical, and photophysical properties of materials; (2) the film formation methods; and (3) the stabilization strategies of inorganic perovskite phase, to provide useful guideline for fabricating devices with further enhanced performance and stability, and promoting commercial applications.
Mohammad Khaja Nazeeruddin, Jianxing Xia, Ruiyuan Hu
Mohammad Khaja Nazeeruddin, Yong Ding, Bin Ding, Xianfu Zhang, Kai Zhang
Mohammad Khaja Nazeeruddin, Hiroyuki Kanda, Pavel Culik