Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Nickel oxide (NiOx)-based inverted perovskite solar cells stand as promising candidates for advancing perovskite photovoltaics towards commercialization, leveraging their remarkable stability, scalability, and cost-effectiveness. However, the interfacial redox reaction between high-valence Ni4+ and perovskite, alongside the facile conversion of iodide in perovskite into I2, significantly deteriorates the performance and reproducibility of NiOx-based perovskite photovoltaics. Here, potassium borohydride (KBH4) is introduced as a dual-action reductant, which effectively avoids the Ni4+/perovskite interface reaction and mitigates the iodide-to-I2 oxidation within perovskite film. This synergistic redox modulation significantly suppresses nonradiative recombination and increases the carrier lifetime. As a result, an impressive power conversion efficiency of 24.17% for NiOx-based perovskite solar cells is achieved, and a record efficiency of 20.2% for NiOx-based perovskite solar modules fabricated under ambient conditions. Notably, when evaluated using the ISOS-L-2 standard protocol, the module retains 94% of its initial efficiency after 2000 h of continuous illumination under maximum power point at 65 degrees C in ambient air.|The dual-action reductant KBH4 is employed to suppress the harmful reaction between NiOx and perovskite while simultaneously avoiding iodide oxidation in perovskite. High-quality perovskite film with low-defect density on NiOx@KBH4 is achieved during the deposition in ambient conditions. This significantly improves the power conversion efficiency and stability of perovskite solar modules. image
Quentin Jean-Marie Armand Guesnay
Mohammad Khaja Nazeeruddin, Jianxing Xia, Ruiyuan Hu
Shaik Mohammed Zakeeruddin, Zhongjin Shen, Yelin Hu, Hongwei Zhu, Yinghui Wu, Jialin Wang, Miao Chen