Publication

Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells

Abstract

Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl) phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSCs. The P.O terminal group of THPPO, a Lewis base, can passivate perovskite surface defects such as undercoordinated Pb2+. Consequently, improvement of PCEs from 19.87 to 20.70% and from 5.84 to 13.31% are achieved in n-i-p PSCs and hole-transporting layer (HTL)-free PSCs, respectively.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Perovskite solar cell
A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture. Solar-cell efficiencies of laboratory-scale devices using these materials have increased from 3.8% in 2009 to 25.
Organic solar cell
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells. The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume.
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Show more
Related publications (42)

Elimination of buried interfacial voids for efficient perovskite solar cells

Bin Ding, Xianfu Zhang, Bo Chen, Yan Liu

Establishing optimal interfacial contact is crucial for enhancing the efficiency of perovskite solar cells (PSCs). However, formation of voids at buried interface of perovskite films often hinders this critical objective. Our investigation reveals that the ...
Amsterdam2024

Structural divergence of molecular hole selective materials for viable p-i-n perovskite photovoltaics: a comprehensive review

Mohammad Khaja Nazeeruddin, Peng Gao, Paramaguru Ganesan

Perovskite solar cells (PSCs) have garnered significant attention within the photovoltaic research community due to their remarkable progress in just one decade. Among the device configurations, the p-i-n structured PSC offers several advantages, including ...
Royal Soc Chemistry2024

Molecularly Tailored Surface Defect Modifier for Efficient and Stable Perovskite Solar Cells

Shaik Mohammed Zakeeruddin, Zhongjin Shen, Yelin Hu, Hongwei Zhu, Yinghui Wu, Jialin Wang, Miao Chen

Surface defects cause non-radiative charge recombination and reduce the photovoltaic performance of perovskite solar cells (PSCs), thus effective passivation of defects has become a crucial method for achieving efficient and stable devices. Organic ammoniu ...
WILEY-V C H VERLAG GMBH2023
Show more
Related MOOCs (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.