**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Generalized linear model

Summary

In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
Generalized linear models were formulated by John Nelder and Robert Wedderburn as a way of unifying various other statistical models, including linear regression, logistic regression and Poisson regression. They proposed an iteratively reweighted least squares method for maximum likelihood estimation (MLE) of the model parameters. MLE remains popular and is the default method on many statistical computing packages. Other approaches, including Bayesian regression and least squares fitting to variance stabilized responses, have been developed.
Intuition
Ordinary linear regression predicts the expected value of a given unknown quantity (the

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (15)

Related concepts (52)

Linear regression

In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variable

Logistic regression

In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear combination of one or m

Statistics

Statistics (from German: Statistik, "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and present

Related courses (92)

Related publications (100)

MATH-341: Linear models

Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with linear models and some of their extensions, which lie at the basis of more general regression model

CS-233(a): Introduction to machine learning (BA3)

Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

MATH-408: Regression methods

General graduate course on regression methods

Loading

Loading

Loading

Related units (14)

The increased accessibility of data that are geographically referenced and correlated increases the demand for techniques of spatial data analysis. The subset of such data comprised of discrete counts exhibit particular difficulties and the challenges further increase when a large proportion (typically 50% or more) of the counts are zero-valued. Such scenarios arise in many applications in numerous fields of research and it is often desirable to infer on subtleties of the process, despite the lack of substantive information obscuring the underlying stochastic mechanism generating the data. An ecological example provides the impetus for the research in this thesis: when observations for a species are recorded over a spatial region, and many of the counts are zero-valued, are the abundant zeros due to bad luck, or are aspects of the region making it unsuitable for the survival of the species? In the framework of generalized linear models, we first develop a zero-inflated Poisson generalized linear regression model, which explains the variability of the responses given a set of measured covariates, and additionally allows for the distinction of two kinds of zeros: sampling ("bad luck" zeros), and structural (zeros that provide insight into the data-generating process). We then adapt this model to the spatial setting by incorporating dependence within the model via a general, leniently-defined quasi-likelihood strategy, which provides consistent, efficient and asymptotically normal estimators, even under erroneous assumptions of the covariance structure. In addition to this advantage of robustness to dependence misspecification, our quasi-likelihood model overcomes the need for the complete specification of a probability model, thus rendering it very general and relevant to many settings. To complement the developed regression model, we further propose methods for the simulation of zero-inflated spatial stochastic processes. This is done by deconstructing the entire process into a mixed, marked spatial point process: we augment existing algorithms for the simulation of spatial marked point processes to comprise a stochastic mechanism to generate zero-abundant marks (counts) at each location. We propose several such mechanisms, and consider interaction and dependence processes for random locations as well as over a lattice.

Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution images. We find that one of the main reasons for that is the lack of an effective receptive field in both the inpainting network and the loss function. To alleviate this issue, we propose a new method called large mask inpainting (LaMa). LaMa is based on i) a new inpainting network architecture that uses fast Fourier convolutions (FFCs), which have the imagewide receptive field; ii) a high receptive field perceptual loss; iii) large training masks, which unlocks the potential of the first two components. Our inpainting network improves the state-of-the-art across a range of datasets and achieves excellent performance even in challenging scenarios, e.g. completion of periodic structures. Our model generalizes surprisingly well to resolutions that are higher than those seen at train time, and achieves this at lower parameter&time costs than the competitive baselines. The code is available at https://github.com/saic-mdal/lama.

Related lectures (251)

Willem Lambrichts, Mario Paolone

In this paper, we present an exact (i.e. non-approximated) and linear measurement model for hybrid AC/DC micro-grids for recursive state estimation (SE). More specifically, an exact linear model of a voltage source converter (VSC) is proposed. It relies on the complex VSC modulation index to relate the quantities at the converters DC side to the phasors at the AC side. The VSC model is derived from a transformer-like representation and accounts for the VSC conduction and switching losses. In the case of three-phase unbalanced grids, the measurement model is extended using the symmetrical component decomposition where each sequence individually affects the DC quantities. Synchronized measurements are provided by phasor measurement units and DC measurement units in the DC system. To make the SE more resilient to vive step changes in the grid states, an adaptive Kalman Filter that uses an approximation of the prediction-error covariance estimation method is proposed. This approximation reduces the computational speed significantly with only a limited reduction in the SE performance. The hybrid SE is validated in an EMTP-RV time-domain simulation of the CIGRE AC benchmark micro-grid that is connected to a DC grid using 4 VSCs. Bad data detection and identification using the largest normalised residual is assessed with respect to such a system. Furthermore, the proposed method is compared with a non-linear weighted least squares SE in terms of accuracy and computational time.

2022