**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Spherical birational sheets in reductive groups

Abstract

We classify the spherical birational sheets in a complex simple simply-connected algebraic group. We use the classification to show that, when G is a connected reductive complex algebraic group with simply-connected derived subgroup, two conjugacy classes O-1, O-2 of G, with O-1 spherical, lie in the same birational sheet, up to a shift by a central element of G, if and only if the coordinate rings of O-1 and O-2 are isomorphic as G-modules. As a consequence, we prove a conjecture of Losev for the spherical subvariety of the Lie algebra of G. (C) 2021 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related concepts (17)

Related publications (1)

Related MOOCs (9)

Lie algebra

In mathematics, a Lie algebra (pronounced liː ) is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative.

Reductive group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n).

Rights

Rights are legal, social, or ethical principles of freedom or entitlement; that is, rights are the fundamental normative rules about what is allowed of people or owed to people according to some legal system, social convention, or ethical theory. Rights are of essential importance in such disciplines as law and ethics, especially theories of justice and deontology. The history of social conflicts has often involved attempts to define and redefine rights.

Loading

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-module