Sobolev spaceIn mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
SouthSouth is one of the cardinal directions or compass points. The direction is the opposite of north and is perpendicular to both east and west. The word south comes from Old English sūþ, from earlier Proto-Germanic *sunþaz ("south"), possibly related to the same Proto-Indo-European root that the word sun derived from.
Partial derivativeIn mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Partial derivatives are used in vector calculus and differential geometry. The partial derivative of a function with respect to the variable is variously denoted by It can be thought of as the rate of change of the function in the -direction.
NorthNorth is one of the four compass points or cardinal directions. It is the opposite of south and is perpendicular to east and west. North is a noun, adjective, or adverb indicating direction or geography. The word north is related to the Old High German nord, both descending from the Proto-Indo-European unit *ner-, meaning "left; below" as north is to left when facing the rising sun. Similarly, the other cardinal directions are also related to the sun's position.
Laplace's equationIn mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
Cauchy momentum equationThe Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum. In convective (or Lagrangian) form the Cauchy momentum equation is written as: where is the flow velocity vector field, which depends on time and space, (unit: ) is time, (unit: ) is the material derivative of , equal to , (unit: ) is the density at a given point of the continuum (for which the continuity equation holds), (unit: ) is the stress tensor, (unit: ) is a vector containing all of the accelerations caused by body forces (sometimes simply gravitational acceleration), (unit: ) is the divergence of stress tensor.
Physical constantA physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is distinct from a mathematical constant, which has a fixed numerical value, but does not directly involve any physical measurement. There are many physical constants in science, some of the most widely recognized being the speed of light in vacuum c, the gravitational constant G, the Planck constant h, the electric constant ε0, and the elementary charge e.
Helmholtz equationIn mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation where ∇2 is the Laplace operator, k2 is the eigenvalue, and f is the (eigen)function. When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics, including the wave equation and the diffusion equation, and it has uses in other sciences.
WestWest is one of the four cardinal directions or points of the compass. It is the opposite direction from east and is the direction in which the Sun sets on the Earth. The word "west" is a Germanic word passed into some Romance languages (ouest in French, oest in Catalan, ovest in Italian, oeste in Spanish and Portuguese). As in other languages, the word formation stems from the fact that west is the direction of the setting sun in the evening: 'west' derives from the Indo-European root *wes reduced from *wes-pero 'evening, night', cognate with Ancient Greek ἕσπερος hesperos 'evening; evening star; western' and Latin vesper 'evening; west'.
Boltzmann equationThe Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium; it was devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid.