Algebraic extensionIn mathematics, an algebraic extension is a field extension L/K such that every element of the larger field L is algebraic over the smaller field K; that is, every element of L is a root of a non-zero polynomial with coefficients in K. A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. The algebraic extensions of the field of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory.
Algebraic numberAn algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x^2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x^4 + 4. All integers and rational numbers are algebraic, as are all roots of integers.
Central simple algebraIn ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.
List of trigonometric identitiesIn trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified.
Weyl's theorem on complete reducibilityIn algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.) Weyl's theorem implies (in fact is equivalent to) that the enveloping algebra of a finite-dimensional representation is a semisimple ring in the following way.
Weyl algebraIn abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form More precisely, let F be the underlying field, and let F[X] be the ring of polynomials in one variable, X, with coefficients in F. Then each fi lies in F[X]. ∂X is the derivative with respect to X. The algebra is generated by X and ∂X. The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring.
Unitarian trickIn mathematics, the unitarian trick is a device in the representation theory of Lie groups, introduced by for the special linear group and by Hermann Weyl for general semisimple groups. It applies to show that the representation theory of some group G is in a qualitative way controlled by that of some other compact group K. An important example is that in which G is the complex general linear group, and K the unitary group acting on vectors of the same size.
Harold Scott MacDonald CoxeterHarold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in Kensington to Harold Samuel Coxeter and Lucy (). His father had taken over the family business of Coxeter & Son, manufacturers of surgical instruments and compressed gases (including a mechanism for anaesthetising surgical patients with nitrous oxide), but was able to retire early and focus on sculpting and baritone singing; Lucy Coxeter was a portrait and landscape painter who had attended the Royal Academy of Arts.
Vieta's formulasIn mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta"). Any general polynomial of degree n (with the coefficients being real or complex numbers and an ≠ 0) has n (not necessarily distinct) complex roots r1, r2, ..., rn by the fundamental theorem of algebra. Vieta's formulas relate the polynomial's coefficients to signed sums of products of the roots r1, r2, .