Publication

New Technologies to Enhance the Figures-of-Merit of GaN Power Devices

Related publications (150)

Polarization-enhanced GaN Schottky barrier diodes: Ultra-thin InGaN for high breakdown voltage and low Ron

Elison de Nazareth Matioli, Alessandro Floriduz, Zheng Hao

In this work, we present a concept that leverages the strong piezoelectric polarization field in InGaN, which counteracts the external electric field at reverse bias. We show that despite the smaller InGaN band-gap and lower critical electric field, its st ...
2024

A Dual-Channel Gate Driver Design with Active Voltage Balancing Circuit for Series Connection of SiC MOSFETs

Drazen Dujic

Dual-channel gate driver is commonly utilized in the industry for accommodating the widespread use of half-bridge power modules. As wide-bandgap devices become increasingly prevalent due to their superior switching characteristics compared with conventiona ...
2024

Advanced Silicon and SWIR Single-Photon Avalanche Diodes: Design, Simulation, and Characterization

Ekin Kizilkan

Low-level light detection with high spatial and timing accuracy is a growing area of interest by virtue of applications such as light detection and ranging (LiDAR), biomedical imaging, time-resolved Raman spectroscopy, and quantum applications. Single-phot ...
EPFL2024

Accurate Measurement of Dynamic ON-Resistance in GaN Transistors at Steady-State

Elison de Nazareth Matioli, Hongkeng Zhu

Accurate characterization of the dynamic ON-resistance (RON) degradation is important to predict conduction losses for gallium nitride high-electron-mobility transistors (GaN HEMTs). However, even for the same device, many inconsistent results of dynamic R ...
2023

Switching losses in power devices: From dynamic on resistance to output capacitance hysteresis

Elison de Nazareth Matioli, Remco Franciscus Peter van Erp, Hongkeng Zhu, Armin Jafari, Palliyage Srilak Nirmana Perera

In this paper, we review some of the main methods to characterize on-state and off-state losses in wide-band-gap devices under switching conditions. In the off-state, we will discuss about losses related to charging and discharging the output capacitance i ...
New York2023

Electronic metadevices for terahertz applications

Elison de Nazareth Matioli

The evolution of electronics has largely relied on downscaling to meet the continuous needs for faster and highly integrated devices(1). As the channel length is reduced, however, classic electronic devices face fundamental issues that hinder exploiting ma ...
NATURE PORTFOLIO2023

Method for operating a power converter and power converter

Drazen Dujic, Jakub Kucka

The present invention relates to a method for operating a resonant power converter (1) having a primary stage (2) and a secondary stage (3) at least one of which is actively operated and includes a half-bridge or full-bridge inverter (21) having a pull-up ...
2023

Frontiers in the Application of RF Vacuum Electronics

Timothy Goodman

The application of radio frequency (RF) vacuum electronics for the betterment of the human condition began soon after the invention of the first vacuum tubes in the 1920s and has not stopped since. Today, microwave vacuum devices are powering important app ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

LiNiO Junction Gate for High-performance Enhancement-mode GaN Power Transistor

Taifang Wang

GaN metal-oxide-semiconductor high electron mobility transistors (MOS)HEMTs) offer outstanding properties for next-generation power electronics devices. The high conductivity, high voltage blocking capability, high operation frequency, and device-level int ...
EPFL2022

A perspective on multi-channel technology for the next-generation of GaN power devices

Elison de Nazareth Matioli, Luca Nela

The outstanding properties of Gallium Nitride (GaN) have enabled considerable improvements in the performance of power devices compared to traditional silicon technology, resulting in more efficient and highly compact power converters. GaN power technology ...
AIP Publishing2022

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.