Cartesian closed categoryIn , a is Cartesian closed if, roughly speaking, any morphism defined on a of two can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by , whose internal language, linear type systems, are suitable for both quantum and classical computation.
Transpose of a linear mapIn linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.
Multilinear mapIn linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function where and are vector spaces (or modules over a commutative ring), with the following property: for each , if all of the variables but are held constant, then is a linear function of . A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, a multilinear map of k variables is called a k-linear map.
Universal algebraUniversal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Algebraic structure In universal algebra, an algebra (or algebraic structure) is a set A together with a collection of operations on A. An n-ary operation on A is a function that takes n elements of A and returns a single element of A.
Injective tensor productIn mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the . Injective tensor products have applications outside of nuclear spaces.
Map (mathematics)In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. The term map may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In , a map may refer to a morphism.