Publication

Vehicle trajectory prediction works, but not everywhere

Abstract

Vehicle trajectory prediction is nowadays a fundamental pillar of self-driving cars. Both the industry and research communities have acknowledged the need for such a pillar by providing public benchmarks. While state-of-the-art methods are impressive, i.e., they have no off-road prediction, their generalization to cities outside of the benchmark remains unexplored. In this work, we show that those methods do not generalize to new scenes. We present a method that automatically generates realistic scenes causing state-of-the-art models to go off-road. We frame the problem through the lens of adversarial scene generation. The method is a simple yet effective generative model based on atomic scene generation functions along with physical constraints. Our experiments show that more than 60% of existing scenes from the current benchmarks can be modified in a way to make prediction methods fail (i.e., predicting off-road). We further show that the generated scenes (i) are realistic since they do exist in the real world, and (ii) can be used to make existing models more robust, yielding 30-40% reductions in the off-road rate. The code is available online: https://s-attack.github.io/

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (33)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.