Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Vehicle trajectory prediction is nowadays a fundamental pillar of self-driving cars. Both the industry and research communities have acknowledged the need for such a pillar by providing public benchmarks. While state-of-the-art methods are impressive, i.e., they have no off-road prediction, their generalization to cities outside of the benchmark remains unexplored. In this work, we show that those methods do not generalize to new scenes. We present a method that automatically generates realistic scenes causing state-of-the-art models to go off-road. We frame the problem through the lens of adversarial scene generation. The method is a simple yet effective generative model based on atomic scene generation functions along with physical constraints. Our experiments show that more than 60% of existing scenes from the current benchmarks can be modified in a way to make prediction methods fail (i.e., predicting off-road). We further show that the generated scenes (i) are realistic since they do exist in the real world, and (ii) can be used to make existing models more robust, yielding 30-40% reductions in the off-road rate. The code is available online: https://s-attack.github.io/
Hannes Bleuler, Jürg Alexander Schiffmann, Tomohiro Nakade, Robert Fuchs
Jean-Philippe Thiran, Guillaume Marc Georges Vray, Devavrat Tomar