Convenience samplingConvenience sampling (also known as grab sampling, accidental sampling, or opportunity sampling) is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand. This type of sampling is most useful for pilot testing. Convenience sampling is not often recommended for research due to the possibility of sampling error and lack of representation of the population. But it can be handy depending on the situation. In some situations, convenience sampling is the only possible option.
Sampling frameIn statistics, a sampling frame is the source material or device from which a sample is drawn. It is a list of all those within a population who can be sampled, and may include individuals, households or institutions. Importance of the sampling frame is stressed by Jessen and Salant and Dillman. In many practical situations the frame is a matter of choice to the survey planner, and sometimes a critical one. [...] Some very worthwhile investigations are not undertaken at all because of the lack of an apparent frame; others, because of faulty frames, have ended in a disaster or in cloud of doubt.
Training, validation, and test data setsIn machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.
Geographic data and informationGeographic data and information is defined in the ISO/TC 211 series of standards as data and information having an implicit or explicit association with a location relative to Earth (a geographic location or geographic position). It is also called geospatial data and information, georeferenced data and information, as well as geodata and geoinformation. Approximately 90% of government sourced data has a location component. Location information (known by the many names mentioned here) is stored in a geographic information system (GIS).
Generalization errorFor supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data. Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.
Stochastic gradient descentStochastic gradient descent (often abbreviated SGD) is an iterative method for optimizing an objective function with suitable smoothness properties (e.g. differentiable or subdifferentiable). It can be regarded as a stochastic approximation of gradient descent optimization, since it replaces the actual gradient (calculated from the entire data set) by an estimate thereof (calculated from a randomly selected subset of the data).
Geographic information scienceGeographic information science (GIScience, GISc) or geoinformation science is a scientific discipline at the crossroads of computational science, social science, and natural science that studies geographic information, including how it represents phenomena in the real world, how it represents the way humans understand the world, and how it can be captured, organized, and analyzed. It is a sub-field of geography, specifically part of technical geography.
Cultural sensitivityCultural sensitivity, also referred to as cross-cultural sensitivity or cultural awareness, is the knowledge, awareness, and acceptance of other cultures and others' cultural identities. It is related to cultural competence (the skills needed for effective communication with people of other cultures, which includes cross-cultural competence), and is sometimes regarded as the precursor to the achievement of cultural competence, but is a more commonly used term.
Geographic information systemA geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database, however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.
Cultural competenceCultural competence, also known as intercultural competence, is a range of cognitive, affective, and behavioural, linguistic, skills that lead to effective and appropriate communication with people of other cultures. Intercultural or cross-cultural education are terms used for the training to achieve cultural competence. Effective intercultural communication relates to behaviors that culminate with the accomplishment of the desired goals of the interaction and all parties involved in the situation.