Geographic information science (GIScience, GISc) or geoinformation science is a scientific discipline at the crossroads of computational science, social science, and natural science that studies geographic information, including how it represents phenomena in the real world, how it represents the way humans understand the world, and how it can be captured, organized, and analyzed. It is a sub-field of geography, specifically part of technical geography. It has applications to both physical geography and human geography, although its techniques can be applied to many other fields of study as well as many different industries. As a field of study or profession, it can be contrasted with geographic information systems (GIS), which are the actual repositories of geospatial data, the software tools for carrying out relevant tasks, and the profession of GIS users. That said, one of the major goals of GIScience is to find practical ways to improve GIS data, software, and professional practice; it is more focused on how gis is applied in real life as opposed to being a geographic information system tool in and of it self. The field is also sometimes called geographical information science. British geographer Michael Goodchild defined this area in the 1990s and summarized its core interests, including spatial analysis, visualization, and the representation of uncertainty. GIScience is conceptually related to geomatics, information science, computer science, and data science, but it claims the status of an independent scientific discipline. Overlapping disciplines are: geocomputation, geoinformatics, geomatics and geovisualization. Other related terms are geographic data science (after data science) and geographic information science and technology (GISci&T), with job titles geospatial information scientists and technologists. Since its inception in the 1990s, the boundaries between GIScience and cognate disciplines are contested, and different communities might disagree on what GIScience is and what it studies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (12)
ENV-140: Fundamentals of geomatics
Bases de la géomatique pour les ingénieur·e·s civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthod
ENV-342: Geographic information system (GIS)
Acquisition de concepts et compétences de base liées à la représentation numérique des données géographiques et à leur insertion dans des SIG. Apprentissage de processus d'analyse spatiale pour les in
ENV-444: Exploratory data analysis in environmental health
This course teaches how to apply exploratory spatial data analysis to health information. Teaching focuses on the role of GIS and spatial statistics in spatial epidemiology. It proposes a context to i
Show more
Related lectures (173)
Venice: Building Evolution and Cadaster Analysis
Explores building evolution in Venice and cadaster analysis through 3D models and genealogy reconstruction.
Chronic Diseases Spatial Distribution
Delves into the spatial distribution of chronic diseases, highlighting specific clusters of high BMI values among adults and children.
Geomatics Elements: Practical ExamplesMOOC: Elements of Geomatics
Explores practical examples related to geomatics elements and differences in elevation.
Show more
Related publications (80)

Epidemicity indices and reproduction numbers from infectious disease data in connected human populations

Andrea Rinaldo, Cristiano Trevisin, Lorenzo Mari, Marino Gatto

We focus on distinctive data-driven measures of the fate of ongoing epidemics. The relevance of our pursuit is suggested by recent results proving that the short-term temporal evolution of infection spread is described by an epidemicity index related to th ...
2024

Work and High Mobility in Europe

Emmanuel Pierre Jean Ravalet

The high work-related mobilities concern a significant proportion of the active population and condition novel lifestyles. This chapter describes the practices and discourses of the people concerned by these high mobilities, challenge a number of preconcep ...
ISTE Wiley2023

Diffusion of energy technologies: the role and dynamics of supply-side information networks

Claudia Rebeca Binder Signer, Romano Tobias Wyss, Gloria Serra Coch, Maria Anna Hecher

The diffusion of energy technologies is key for supporting the energy transition. While social influence and peer effects have been extensively studied on the demand side and found to impact adoption, less focus has been given to the role of information ne ...
2023
Show more
Related concepts (18)
Geocomputation
Geocomputation (sometimes GeoComputation) is a field of study at the intersection of geography and computation. Openshaw, S., and R. J. Abrahart. (1996). “Geocomputation.” In Proceedings of the 1st International Conference on GeoComputation, 665–6, edited by R. J. Abrahart. Leeds, U.K.: University of Leeds Longley, P. A., S. M. Brooks, R. McDonnell, and W. D. Macmillan. (1998). Geocomputation: A Primer. Chichester, U.K.: John Wiley & Sons Gahegan, M. (1999). “Guest Editorial: What is Geocomputation?” Transactions in GIS 3(3), 203–6.
Geography
Geography (from Greek: γεωγραφία, geographia. Combination of Greek words 'Geo' (The Earth) and 'Graphien' (to describe), literally "earth description") is a field of science devoted to the study of the lands, features, inhabitants, and phenomena of Earth. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be.
Geomatics
Geomatics is defined in the ISO/TC 211 series of standards as the "discipline concerned with the collection, distribution, storage, analysis, processing, presentation of geographic data or geographic information". Under another definition, it consists of products, services and tools involved in the collection, integration and management of geographic (geospatial) data. It is also known as geomatic(s) engineering (geodesy and geoinformatics engineering or geospatial engineering).
Show more
Related MOOCs (9)
Introduction to Geographic Information Systems (part 2)
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Introduction to Geographic Information Systems (part 2)
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Geographical Information Systems 2
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS). It offers an introduction to GIS that does not require prior compu
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.