Convenience samplingConvenience sampling (also known as grab sampling, accidental sampling, or opportunity sampling) is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand. This type of sampling is most useful for pilot testing. Convenience sampling is not often recommended for research due to the possibility of sampling error and lack of representation of the population. But it can be handy depending on the situation. In some situations, convenience sampling is the only possible option.
Sampling frameIn statistics, a sampling frame is the source material or device from which a sample is drawn. It is a list of all those within a population who can be sampled, and may include individuals, households or institutions. Importance of the sampling frame is stressed by Jessen and Salant and Dillman. In many practical situations the frame is a matter of choice to the survey planner, and sometimes a critical one. [...] Some very worthwhile investigations are not undertaken at all because of the lack of an apparent frame; others, because of faulty frames, have ended in a disaster or in cloud of doubt.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Information géographiqueL'information géographique est la représentation d'un objet ou d'un phénomène réel ou imaginaire, présent, passé ou futur, localisé dans l'espace à un moment donné et quelles qu'en soient la dimension et l'échelle de représentation. thumb|300px|Autre exemple, illustrant la présentation de données à une échelle plus locale que ci-dessus. On distingue habituellement deux types d'information géographique : des informations de base ou de référence (ex.
Generalization errorFor supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data. Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Geographic information scienceGeographic information science (GIScience, GISc) or geoinformation science is a scientific discipline at the crossroads of computational science, social science, and natural science that studies geographic information, including how it represents phenomena in the real world, how it represents the way humans understand the world, and how it can be captured, organized, and analyzed. It is a sub-field of geography, specifically part of technical geography.
Cultural sensitivityCultural sensitivity, also referred to as cross-cultural sensitivity or cultural awareness, is the knowledge, awareness, and acceptance of other cultures and others' cultural identities. It is related to cultural competence (the skills needed for effective communication with people of other cultures, which includes cross-cultural competence), and is sometimes regarded as the precursor to the achievement of cultural competence, but is a more commonly used term.
Système d'information géographiqueUn système d'information géographique ou SIG (en anglais, geographic information system ou GIS) est un système d'information conçu pour recueillir, stocker, traiter, analyser, gérer et présenter tous les types de données spatiales et géographiques. L’acronyme SIG est parfois utilisé pour définir les « sciences de l’information géographique » ou « études sur l’information géospatiale ». Cela se réfère aux carrières ou aux métiers qui impliquent l'usage de systèmes d’information géographique et, dans une plus large mesure, qui concernent les disciplines de la géo-informatique (ou géomatique).
Compétence interculturelle (sociologie)La compétence interculturelle est définie par l’aptitude à pouvoir communiquer avec succès avec des gens d’autres cultures. Cette faculté peut être présente dès le plus jeune âge ou (selon la disposition et la volonté) être développée de manière méthodique. La base d’une communication interculturelle réussie est la compétence émotionnelle et la sensibilité interculturelle. Ce concept est utilisé principalement dans le monde de l'industrie et des finances.