Low-Rank Tensor Methods for High-Dimensional Problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The objective of this paper is to investigate a new numerical method for the approximation of the self-diffusion matrix of a tagged particle process defined on a grid. While standard numerical methods make use of long-time averages of empirical means of de ...
The Internodes method is a general purpose method to deal with non-conforming discretizations of partial differential equations on 2D and 3D regions partitioned into disjoint subdomains. In this paper we are interested in measuring how much the Internodes ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
A rank-adaptive integrator for the approximate solution of high-order tensor differential equations by tree tensor networks is proposed and analyzed. In a recursion from the leaves to the root, the integrator updates bases and then evolves connection tenso ...
Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. But depen ...
We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method orig ...
In this work, we present a PDE-aware deep learning model for the numerical solution to the inverse problem of electrocardiography. The model both leverages data availability and exploits the knowledge of a physically based mathematical model, expressed by ...
Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...