Investigating the neuromechanical control of healthy gait modulation and pathological gaits observed in cerebral palsy using neuromuscular simulations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Spinal cord injury (SCI) is a major cause of paralysis with currently no effective treatment.
Epidural electrical stimulation (EES) of the lumbar spinal cord has been shown to restore locomotion in animal models of SCI, but has not yet reached the same lev ...
Passive spring-like structures can store and return energy during cyclic movements and thereby reduce the energetic cost of locomotion. That makes them important components of the human body and wearable assistive devices alike. This study investigates how ...
Neuromuscular diseases are degenerative and, thus far, incurable disorders that lead to large muscle wasting. They result in constant deterioration of activities of daily living and in particular of ambulation. Some common types include Duchenne muscular d ...
There is a growing interest for turning biomechanics notably because it is a more challenging task than straight-line walking during which some gait impairments are increased. Detecting heel-strike (HS) and toe-off (TO) events using the trajectory of marke ...
Systemic hypoxia-ischemia (HI) often occurs during preterm birth in human. HI induces injuries to hinder brain cells mainly in the ipsilateral forebrain structures. Such HI injuries may cause lifelong disturbances in the distant regions, such as the contra ...
This study investigates the performance of an updated version of our pre-impact detection algorithm while parsing out hip kinematics in order to identify unexpected tripping-like perturbations during walking. This approach grounds on the hypothesis that du ...
This article presents a control algorithm framework with which a bipedal robot can perform a variety of gaits by only modifying a small set of control parameters. The controller drives a number of variables, called non-emergent variables, to their desired ...
Human walking speeds can be influenced by multiple factors, from energetic considerations to the time to reach a destination. Neurological deficits or lower-limb injuries can lead to slower walking speeds, and the recovery of able-bodied gait speed and beh ...
Over the last decade, active lower-limb prostheses demonstrated their ability to restore a physiological gait for transfemoral amputees by supplying the required positive energy balance during daily life locomotion activities. However, the added-value of s ...
This paper presents a novel functional electrical stimulation paradigm to generate locomotion in paraplegic patients. We propose a closed-loop surface functional electrical stimulation (sFES) of 16 lower-limb muscles to produce all subphases of the gait. T ...