Development of next-generation microfluidic systems for enhanced, faster, and cost-effective immunoassays for tissue diagnostics - Ac electrothermal flow & Acoustofluidics
Related publications (120)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Performances of surface biosensors are often controlled by the analyte delivery rate to the sensing surface instead of sensors intrinsic detection capabilities. In a microfluidic channel, analyte transports diffusively to the biosensor surface severely lim ...
Microfluidic bio-assays have emerged as the most privileged solutions and provide the basis for the realization of miniaturized bio-analytical systems and clinical diagnostic devices that are portable, user-friendly and cost-effective (Lab-on-a-chip). Two ...
Microfluidic technology has revolutionized the control of flows at small scales giving rise to new possibilities for assembling complex structures on the microscale. We analyze different possible algorithms for assembling arbitrary structures, and demonstr ...
Abstract Microfluidics for most bio-related diagnostic applications typically requires single usage disposable chips to avoid bio-fouling and cross-contamination. Individual piece-wise manufacturing of polymeric microfluidic devices has been widely employe ...
Microfluidic systems are an attractive solution for the miniaturization of biological and chemical assays. The typical sample volume can be reduced up to 1 million-fold, and a superb level of spatiotemporal control is possible, facilitating highly parallel ...
Droplet-based microfluidic systems allow biological and chemical reactions to be performed on a drastically decreased scale. However, interfacing the outside world with such systems and generating high numbers of microdroplets of distinct chemical composit ...
Performances of the biosensors are often limited by the depletion zones created around the sensing area which impede the effective analyte transport. To overcome this limitation, we propose and demonstrate a nanoplasmonic-nanofluidic sensor enabling target ...
We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pre ...
This article presents the design and fabrication of a microfluidic biosensor cartridge for the continuous and simultaneous measurement of biologically relevant analytes in a sample solution. The biosensor principle is based on the amperometric detection of ...
Separation and subsequent culturing of MCF-7 breast cancer cells on self-assembled protein-coated magnetic beads in a microfluidic chip is demonstrated. The beads were patterned in situ inside a sealed microfluidic channel using magnetic-field-assisted ele ...