Boolean functionIn mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form , where is known as the Boolean domain and is a non-negative integer called the arity of the function.
Boolean expressionIn computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false. A Boolean expression may be composed of a combination of the Boolean constants true or false, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions. Boolean expressions correspond to propositional formulas in logic and are a special case of Boolean circuits.
Boolean data typeIn computer science, the Boolean (sometimes shortened to Bool) is a data type that has one of two possible values (usually denoted true and false) which is intended to represent the two truth values of logic and Boolean algebra. It is named after George Boole, who first defined an algebraic system of logic in the mid 19th century. The Boolean data type is primarily associated with conditional statements, which allow different actions by changing control flow depending on whether a programmer-specified Boolean condition evaluates to true or false.
Boolean domainIn mathematics and abstract algebra, a Boolean domain is a set consisting of exactly two elements whose interpretations include false and true. In logic, mathematics and theoretical computer science, a Boolean domain is usually written as {0, 1}, or The algebraic structure that naturally builds on a Boolean domain is the Boolean algebra with two elements. The initial object in the of bounded lattices is a Boolean domain. In computer science, a Boolean variable is a variable that takes values in some Boolean domain.
Maximum cardinality matchingMaximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.
Complete Boolean algebraIn mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.
Propensity score matchingIn the statistical analysis of observational data, propensity score matching (PSM) is a statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment. PSM attempts to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units that received the treatment versus those that did not. Paul R.
Boolean differential calculusBoolean differential calculus (BDC) (German: Boolescher Differentialkalkül (BDK)) is a subject field of Boolean algebra discussing changes of Boolean variables and Boolean functions. Boolean differential calculus concepts are analogous to those of classical differential calculus, notably studying the changes in functions and variables with respect to another/others. The Boolean differential calculus allows various aspects of dynamical systems theory such as automata theory on finite automata Petri net theory supervisory control theory (SCT) to be discussed in a united and closed form, with their individual advantages combined.
Matching (statistics)Matching is a statistical technique which is used to evaluate the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned). The goal of matching is to reduce bias for the estimated treatment effect in an observational-data study, by finding, for every treated unit, one (or more) non-treated unit(s) with similar observable characteristics against which the covariates are balanced out.
Conditional (computer programming)In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language commands for handling decisions. Specifically, conditionals perform different computations or actions depending on whether a programmer-defined Boolean condition evaluates to true or false. In terms of control flow, the decision is always achieved by selectively altering the control flow based on some condition (apart from the case of branch predication).