Weierstrass elliptic functionIn mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.
Weber modular functionIn mathematics, the Weber modular functions are a family of three functions f, f1, and f2, studied by Heinrich Martin Weber. Let where τ is an element of the upper half-plane. Then the Weber functions are These are also the definitions in Duke's paper "Continued Fractions and Modular Functions". The function is the Dedekind eta function and should be interpreted as . The descriptions as quotients immediately imply The transformation τ → –1/τ fixes f and exchanges f1 and f2.
Shimura varietyIn number theory, a Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over Q. Shimura varieties are not algebraic varieties but are families of algebraic varieties. Shimura curves are the one-dimensional Shimura varieties. Hilbert modular surfaces and Siegel modular varieties are among the best known classes of Shimura varieties.
Elliptic curveIn mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K^2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for: for some coefficients a and b in K. The curve is required to be non-singular, which means that the curve has no cusps or self-intersections.
Algebraic geometryAlgebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.
Algebraic cycleIn mathematics, an algebraic cycle on an algebraic variety V is a formal linear combination of subvarieties of V. These are the part of the algebraic topology of V that is directly accessible by algebraic methods. Understanding the algebraic cycles on a variety can give profound insights into the structure of the variety. The most trivial case is codimension zero cycles, which are linear combinations of the irreducible components of the variety. The first non-trivial case is of codimension one subvarieties, called divisors.
Upper half-planeIn mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is defined similarly, by requiring that be negative instead. Each is an example of two-dimensional half-space. The affine transformations of the upper half-plane include shifts , , and dilations , . Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes to . Proof: First shift the center of to . Then take and dilate.
Algebraic groupIn mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties.
Algebraic numberAn algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x^2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x^4 + 4. All integers and rational numbers are algebraic, as are all roots of integers.
Abelian varietyIn mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field.