Image segmentationIn and computer vision, image segmentation is the process of partitioning a into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Geographic information systemA geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database, however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.
Activity recognitionActivity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. Since the 1980s, this research field has captured the attention of several computer science communities due to its strength in providing personalized support for many different applications and its connection to many different fields of study such as medicine, human-computer interaction, or sociology.
Visual temporal attentionVisual temporal attention is a special case of visual attention that involves directing attention to specific instant of time. Similar to its spatial counterpart visual spatial attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models.
Metric systemThe metric system is a system of measurement that succeeded the decimalised system based on the metre, which had been introduced in France in the 1790s. The historical development of these systems culminated in the definition of the International System of Units (SI) in the mid-20th century, under the oversight of an international standards body. Adopting the metric system is known as metrication. The historical evolution of metric systems has resulted in the recognition of several principles.
Scale-invariant feature transformThe scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. Applications include object recognition, robotic mapping and navigation, , 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first extracted from a set of reference images and stored in a database.
Intersection theoryIn mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks.
3D scanning3D scanner is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance (e.g. color). The collected data can then be used to construct digital 3D models. A 3D scanner can be based on many different technologies, each with its own limitations, advantages and costs. Many limitations in the kind of objects that can be digitised are still present. For example, optical technology may encounter many difficulties with dark, shiny, reflective or transparent objects.