**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Linear Recursive State Estimation of Hybrid and Unbalanced AC/DC Micro-Grids using Synchronized Measurements

Abstract

In this paper, we present an exact (i. e. non-approximated) and linear measurement model for hybrid AC/DC microgrids for recursive state estimation (SE). More specifically, an exact linear model of a voltage source converter (VSC) is proposed. It relies on the complex VSC modulation index to relate the quantities at the converters DC side to the phasors at the AC side. The VSC model is derived from a transformer-like representation and accounts for the VSC conduction and switching losses. In the case of three-phase unbalanced grids, the measurement model is extended using the symmetrical component decomposition where each sequence individually affects the DC quantities. Synchronized measurements are provided by phasor measurement units and DC measurement units in the DC system. To make the SE more resilient to vive step changes in the grid states, an adaptive Kalman Filter that uses an approximation of the prediction-error covariance estimation method is proposed. This approximation reduces the computational speed significantly with only a limited reduction in the SE performance. The hybrid SE is validated in an EMTP-RV time-domain simulation of the CIGRE AC benchmark micro-grid that is connected to a DC grid using 4 VSCs. Bad data detection and identification using the largest normalised residual is assessed with respect to such a system. Furthermore, the proposed method is compared with a non-linear weighted least squares SE in terms of accuracy and computational time.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (12)

Related concepts (32)

Related publications (54)

Découvrez les systèmes alternatifs triphasés et leurs charges associées ainsi que les régimes transitoires, base des alimentations à découpage.

Découvrez les systèmes alternatifs triphasés et leurs charges associées ainsi que les régimes transitoires, base des alimentations à découpage.

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.

In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value. Generalized linear models were formulated by John Nelder and Robert Wedderburn as a way of unifying various other statistical models, including linear regression, logistic regression and Poisson regression.

Mario Paolone, Willem Lambrichts

In this paper, we present a model for the analytical computation of the power flow sensitivity coefficients (SCs) for hybrid AC/DC networks. The SCs are defined as the partial derivates of the nodal voltages with respect to the active and reactive power in ...

2024Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...

,

This paper presents the experimental validation of a linear recursive state estimation (SE) process for hybrid AC/DC microgrids proposed in the authors' previous work. The SE uses a unified and linear measurement model that relies on the use of synchronize ...