On distributional autoregression and iterated transportation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a framework for performing regression when both covariate and response are probability distributions on a compact and convex subset of Rd. Our regression model is based on the theory of optimal transport and links the conditional Fr'echet m ...
This study compares three imputation methods applied to the field observations of hydraulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of groundwater elevations often face issues with missing data that may mislead bot ...
Distribution-on-distribution regression considers the problem of formulating and es-timating a regression relationship where both covariate and response are probability distributions. The optimal transport distributional regression model postulates that th ...
We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a funct ...
Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well ha ...
A functional (lagged) time series regression model involves the regression of scalar response time series on a time series of regressors that consists of a sequence of random functions. In practice, the underlying regressor curve time series are not always ...
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
We present a framework for performing regression when both covariate and response are probability distributions on a compact interval. Our regression model is based on the theory of optimal transportation, and links the conditional Frechet mean of the resp ...
This work analyses the temporal and spatial characteristics of bioclimatic conditions in the Lower Silesia region. The daily time values (12UTC) of meteorological variables in the period 1966–2017 from seven synoptic stations of the Institute of Meteorolog ...
We derived computationally efficient average response models of different types of cortical neurons, which are subject to external electric fields from Transcranial Magnetic Stimulation. We used 24 reconstructions of pyramidal cells (PC) from layer 2/3, 24 ...