Numerical analysis of stable brine displacements for evaluation of density-dependent flow theory
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis addresses the development and implementation of efficient and parallel algorithms for the numerical simulation of Fluid-Structure Interaction (FSI) problems in hemodynamics. Indeed, hemodynamic conditions in large arteries are significantly aff ...
Centrifugal pumps are required to sustain a stable operation of the system they support under all operating conditions. Minor modifications of the surfaces defining the pump's water passage can influence the tendency to unstable system operation significan ...
This study derives geometric, variational discretization of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of flui ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
The goal of this project is to numerically solve the Navier-Stokes equations by using different numerical methods with particular emphasis on solving the problem of the flow past a square cylinder. In particular, we use the finite element method based on P ...
In fluid mechanics, turbulence can occur in very simple flow geometries, for Newtonian fluids and without the need for additional flow conditions such as temperature gradients or chemical reactions. In standard cases, intuitive assumptions on the physics o ...
Fluid flow in porous media is a multiscale process where the effective dynamics, which is often the goal of a computation, depends strongly on the porous micro structure. Resolving the micro structure in the whole porous medium can, however, be prohibitive ...
Based on systematic experiments on the influence of air entrainment on rock block stability in plunge pools impacted by high-velocity jets, this study presents adaptations of a physically based scour model. The modifications regarding jet aeration are impl ...
Land-surface heterogeneity affects turbulent fluxes of momentum and scalars (i.e., heat, moisture and trace gases). In particular, non-uniform momentum and scalar flux distributions are expected downwind of complex urban environments and steep topography, ...
A 2D numerical flow model, developed at the Research unit of Hydrology, Applied Hydrodynamics and Hydraulic Constructions at ULg, has been applied to flows in a macro-rough channel. The model solves the shallow water equations (SWE) with a two length scale ...