Publication

Vibrational overtone spectroscopy of jet-cooled methanol from 5000 to 14000 cm(-1)

Thomas Rizzo
2005
Journal paper
Abstract

Spectra of jet-cooled methanol in the overtone and combination region from 5000 to, 14000 cm(-1) have been obtained by means of infrared laser-assisted photofragment spectroscopy. Many of the observed features are assigned to combination bands of the type nv(1) + v(6), nv(1) + v(8), and nv(1) + v(6) + v(8) (n = 1,2,3), where v(1) is the OH stretch, v(6) is the OH bend, and v(8) is the CO stretch. These bands show sharp torsion-rotation structure with features as narrow as 0.1 cm(-1). We also observe CH stretch overtones that are weaker than the OH containing combination bands and lack distinct torsion-rotation structure above V-CH = 2. The extent of observed structure on these bands allows us to place limits on the intramolecular vibrational energy redistribution decay rates in the upper vibrational states. We report a global fit of the observed band centers to a simple expression involving low-order anharmonicity constants. (C) 2005 American Institute of Physics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (9)
Rotational–vibrational spectroscopy
Rotational–vibrational spectroscopy is a branch of molecular spectroscopy concerned with infrared and Raman spectra of molecules in the gas phase. Transitions involving changes in both vibrational and rotational states can be abbreviated as rovibrational (or ro-vibrational) transitions. When such transitions emit or absorb photons (electromagnetic radiation), the frequency is proportional to the difference in energy levels and can be detected by certain kinds of spectroscopy.
Infrared spectroscopy
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify and verify known and unknown samples. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum.
Molecular vibration
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 1013 Hz to approximately 1014 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm−1 and wavelengths of approximately 30 to 3 μm. For a diatomic molecule A−B, the vibrational frequency in s−1 is given by , where k is the force constant in dyne/cm or erg/cm2 and μ is the reduced mass given by .
Show more
Related publications (37)

Quantitative Analysis of Nanorough Hydrogenated Si(111) Surfaces through Vibrational Spectral Assignment by Periodic DFT Calculations br

Christophe Ballif, Stefaan De Wolf, Jakub Holovsky

In this work, we use periodic density functional theory(periodic DFT) to rigorously assign vibrational spectra measured on nanorough wet-processed hydrogenated Si(111) surfaces. We compare Si(111)-(1x1) surfaces etched by dilute HF and NH4F, featuring two ...
AMER CHEMICAL SOC2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.