Graph isomorphismIn graph theory, an isomorphism of graphs G and H is a bijection between the vertex sets of G and H such that any two vertices u and v of G are adjacent in G if and only if and are adjacent in H. This kind of bijection is commonly described as "edge-preserving bijection", in accordance with the general notion of isomorphism being a structure-preserving bijection. If an isomorphism exists between two graphs, then the graphs are called isomorphic and denoted as . In the case when the bijection is a mapping of a graph onto itself, i.
Negative selection (natural selection)In natural selection, negative selection or purifying selection is the selective removal of alleles that are deleterious. This can result in stabilising selection through the purging of deleterious genetic polymorphisms that arise through random mutations. Purging of deleterious alleles can be achieved on the population genetics level, with as little as a single point mutation being the unit of selection. In such a case, carriers of the harmful point mutation have fewer offspring each generation, reducing the frequency of the mutation in the gene pool.
Chordal graphIn the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree.
Symmetric graphIn the mathematical field of graph theory, a graph G is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices u_1—v_1 and u_2—v_2 of G, there is an automorphism such that and In other words, a graph is symmetric if its automorphism group acts transitively on ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called 1-arc-transitive or flag-transitive. By definition (ignoring u_1 and u_2), a symmetric graph without isolated vertices must also be vertex-transitive.
Spatial analysisSpatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures.
Population geneticsPopulation genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics.
Neutral theory of molecular evolutionThe neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The theory applies only for evolution at the molecular level, and is compatible with phenotypic evolution being shaped by natural selection as postulated by Charles Darwin.
Graph theoryIn mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.
Bipartite graphIn the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets and may be thought of as a coloring of the graph with two colors: if one colors all nodes in blue, and all nodes in red, each edge has endpoints of differing colors, as is required in the graph coloring problem.
Background selectionBackground selection describes the loss of genetic diversity at a non-deleterious locus due to negative selection against linked deleterious alleles. It is one form of linked selection, where the maintenance or removal of an allele from a population is dependent upon the alleles in its linkage group. The name emphasizes the fact that the genetic background, or genomic environment, of a neutral mutation has a significant impact on whether it will be preserved (genetic hitchhiking) or purged (background selection) from a population.