On the use of training sequences for channel estimation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Compute–forward is a coding technique that enables receiver(s) in a network to directly decode one or more linear combinations of the transmitted codewords. Initial efforts focused on Gaussian channels and derived achievable rate regions via nested lattice ...
Smart contracts have emerged as the most promising foundations for applications of the blockchain technology. Even though smart contracts are expected to serve as the backbone of the next-generation web, they have several limitations that hinder their wide ...
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
Riparian vegetation, which is commonly found in natural rivers and open channels, has a strong influence on flow structures. This paper describes a laboratory experiment on velocity distributions, secondary currents, and coherent structures in narrow open- ...
Commitment is a key primitive which resides at the heart of several cryptographic protocols. Noisy channels can help realize information-theoretically secure commitment schemes; however, their imprecise statistical characterization can severely impair such ...
The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...
The recently introduced polar codes constitute a breakthrough in coding theory due to their capacity-achieving property. This goes hand in hand with a quasilinear construction, encoding, and successive cancellation list decoding procedures based on the Plo ...
We revise the proof of low-rate upper bounds on the reliability function of discrete memoryless channels for ordinary and list-decoding schemes, in particular Berlekamp and Blinovsky's zero-rate bound, as well as Blahut's bound for low rates. The available ...
Transport through quantum coherent conductors, such as atomic junctions, is described by conduction channels. Information about the number of channels and their transmissions can be extracted from various sources, such as multiple Andreev reflections, dyna ...
State-of-the-art Artificial Intelligence (AI) algorithms, such as graph neural networks and recommendation systems, require floating-point computation of very large matrix multiplications over sparse data. Their execution in resource-constrained scenarios, ...