Improving Robustness and Precision in Mobile Robot Localization by Using Laser Range Finding and Monocular Vision
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The Laboratory of Intelligent Systems (LIS) at the Swiss Federal Technical Institute at Lausanne (EPFL) is working on a project to create an autonomous flying robot that uses ‘vision’ (i.e. optical flow) to maneuver through small spaces such as corridors i ...
This thesis is about topological navigation, more precisely about space representation, perception, localization and mapping. All these elements are needed in order to obtain a robust and reliable framework for navigation. This is essential in order to mov ...
This paper presents a new technique to estimate the extrinsic parameters of a robot-vision sensor system. More in general, this technique can be adopted to calibrate any robot bearing sensor. It is based on the Extended Kalman Filter. It is very simple and ...
This paper presents the extension and experimental validation of the widely used EKF1-based SLAM2 algorithm to 3D space. It uses planar features extracted probabilistically from dense three-dimensional point clouds generated by a rotating 2D laser scanner. ...
In this paper, we introduce Bayesian networks architecture for combining speech-based information with that from another modality for error handling in human-robot dialogue system. In particular, we report on experiments interpreting speech and laser scann ...
This paper presents a solution to the Simultaneous Localization and Mapping (SLAM) problem in the stochastic map framework for a mobile robot navigating in an indoor environment. The approach is based on the concept of the relative map. The idea consists i ...
This paper addresses the problem of the odometry error estimation during the robot navigation. The robot is equipped with an external sensor (like laser range finder). Concerning the systematic error an augmented Kalman Filter is introduced. This filter es ...
This paper presents a solution to the Simultaneous Localization and Mapping (SLAM) problem in the stochastic map framework for a mobile robot navigating in an indoor environment. The approach is based on the concept of the relative map. The idea consists i ...
This paper presents an experimental evaluation of different line extraction algorithms on 2D laser scans for indoor environment. Six popular algorithms in mobile robotics and computer vision are selected and tested. Experiments are performed on 100 real da ...
Recent studies on multi-robot localization have shown that the uncertainty of robot location may be considerably reduced by optimally fusing odometry and the relative angles of sight (bearing) among the team members. However, the latter requires the capabi ...