This paper presents the extension and experimental validation of the widely used EKF1-based SLAM2 algorithm to 3D space. It uses planar features extracted probabilistically from dense three-dimensional point clouds generated by a rotating 2D laser scanner. These features are represented in compliance with the Symmetries and Perturbation model (SPmodel) in a stochastic map. As the robot moves, this map is updated incrementally while its pose is tracked by using an Extended Kalman Filter. After showing how three-dimensional data can be generated, the probabilistic feature extraction method is described, capable of robustly extracting (infinite) planes from structured environments. The SLAM algorithm is then used to track a robot moving through an indoor environment and its capabilities in terms of 3D reconstruction are analyzed.
Nadia Barbara Figueroa Fernandez
Aude Billard, Diego Felipe Paez Granados, Pericle Salvini
Alexander Mathis, Mackenzie Mathis