Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
Work hardeningIn materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context. This strengthening occurs because of dislocation movements and dislocation generation within the crystal structure of the material. Many non-brittle metals with a reasonably high melting point as well as several polymers can be strengthened in this fashion.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Finite morphismIn algebraic geometry, a finite morphism between two affine varieties is a dense regular map which induces isomorphic inclusion between their coordinate rings, such that is integral over . This definition can be extended to the quasi-projective varieties, such that a regular map between quasiprojective varieties is finite if any point like has an affine neighbourhood V such that is affine and is a finite map (in view of the previous definition, because it is between affine varieties).
Reactive centrifugal forceIn classical mechanics, a reactive centrifugal force forms part of an action–reaction pair with a centripetal force. In accordance with Newton's first law of motion, an object moves in a straight line in the absence of a net force acting on the object. A curved path may however ensue when such a force acts on it; this force is often called a centripetal force, as it is directed toward the center of curvature of the path.
Representation theory of finite groupsThe representation theory of groups is a part of mathematics which examines how groups act on given structures. Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. For more details, please refer to the section on permutation representations. Other than a few marked exceptions, only finite groups will be considered in this article. We will also restrict ourselves to vector spaces over fields of characteristic zero.
Physical objectIn common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a defined contiguous boundary in three-dimensional space. The boundary surface must be defined and identified by the properties of the material, although it may change over time. The boundary is usually the visible or tangible surface of the object. The matter in the object is constrained (to a greater or lesser degree) to move as one object.
Centrifugal forceIn Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel to the axis of rotation and passing through the coordinate system's origin. If the axis of rotation passes through the coordinate system's origin, the centrifugal force is directed radially outwards from that axis.
Detached objectDetached objects are a dynamical class of minor planets in the outer reaches of the Solar System and belong to the broader family of trans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun (perihelion) are sufficiently distant from the gravitational influence of Neptune that they are only moderately affected by Neptune and the other known planets: This makes them appear to be "detached" from the rest of the Solar System, except for their attraction to the Sun.