Low-density parity-check codes with rates very close to the capacity of the q-ary symmetric channel for large q
Related publications (155)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
5G New Radio (NR) has stringent demands on both performance and complexity for the design of low-density parity-check (LDPC) decoding algorithms and corresponding VLSI implementations. Furthermore, decoders must fully support the wide range of all 5G NR bl ...
Since polar were ratified as part of the 5G standard, low-complexity polar decoders with close-to-optimum error-rate performance have received significant attention. Compared to successive cancellation (SC) decoding, both SC list and SC flip decoding can i ...
Due to its high parallelism, belief propagation (BP)decoding is amenable to high-throughput applications and thusrepresents a promising solution for the ultra-high peak datarate required by future communication systems. To bridge theperformance gap compare ...
The recently introduced polar codes constitute a breakthrough in coding theory due to their capacity-achieving property. This goes hand in hand with a quasilinear construction, encoding, and successive cancellation list decoding procedures based on the Plo ...
Low-Density Parity-Check (LDPC) decoder is among the power hungry building blocks of wireless communication systems. Voltage scaling down to Near-Threshold (NT) voltages substantially improves energy efficiency, in theory up 10x. However, tuning the voltag ...
New York2023
The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...
EPFL2022
, , , , ,
Compared with the bit-wise successive cancellation list (SCL) decoding of polar codes, the node-based Fast SCL decoding significantly reduces the decoding latency by identifying special constituent codes and decoding these in parallel. To further reduce th ...
We revise the proof of low-rate upper bounds on the reliability function of discrete memoryless channels for ordinary and list-decoding schemes, in particular Berlekamp and Blinovsky's zero-rate bound, as well as Blahut's bound for low rates. The available ...
Locally correctable codes (LCCs) are error correcting codes C : \Sigmak \rightarrow \Sigman which admit local algorithms that correct any individual symbol of a corrupted codeword via a minuscule number of queries. For systematic codes, this notion is stro ...
In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Arikan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called po ...