Horner's methodIn mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. After the introduction of computers, this algorithm became fundamental for computing efficiently with polynomials.
Jacobi polynomialsIn mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. The Jacobi polynomials are defined via the hypergeometric function as follows: where is Pochhammer's symbol (for the rising factorial).
Elementary algebraElementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entails use of algebraic notation and an understanding of the general rules of the operations introduced in arithmetic. Unlike abstract algebra, elementary algebra is not concerned with algebraic structures outside the realm of real and complex numbers.
Tower of fieldsIn mathematics, a tower of fields is a sequence of field extensions F0 ⊆ F1 ⊆ ... ⊆ Fn ⊆ ... The name comes from such sequences often being written in the form A tower of fields may be finite or infinite. Q ⊆ R ⊆ C is a finite tower with rational, real and complex numbers. The sequence obtained by letting F0 be the rational numbers Q, and letting (i.e. Fn+1 is obtained from Fn by adjoining a 2n th root of 2) is an infinite tower.
Computational number theoryIn mathematics and computer science, computational number theory, also known as algorithmic number theory, is the study of computational methods for investigating and solving problems in number theory and arithmetic geometry, including algorithms for primality testing and integer factorization, finding solutions to diophantine equations, and explicit methods in arithmetic geometry.
Sparse polynomialIn mathematics, a sparse polynomial (also lacunary polynomial or fewnomial) is a polynomial that has far fewer terms than its degree and number of variables would suggest. For example, x10 + 3x3 - 1 is a sparse polynomial as it is a trinomial with a degree of 10. The motivation for studying sparse polynomials is to concentrate on the structure of a polynomial's monomials instead of its degree, as one can see, for instance, by comparing Bernstein-Kushnirenko theorem with Bezout's theorem.
Perfect numberIn number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. The sum of divisors of a number, excluding the number itself, is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors including itself; in symbols, where is the sum-of-divisors function.
Minimal polynomial (linear algebra)In linear algebra, the minimal polynomial μA of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μA. The following three statements are equivalent: λ is a root of μA, λ is a root of the characteristic polynomial χA of A, λ is an eigenvalue of matrix A. The multiplicity of a root λ of μA is the largest power m such that ker((A − λIn)m) strictly contains ker((A − λIn)m−1).
Associated Legendre polynomialsIn mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation or equivalently where the indices l and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on only if l and m are integers with 0 ≤ m ≤ l, or with trivially equivalent negative values. When in addition m is even, the function is a polynomial.
Master theorem (analysis of algorithms)In the analysis of algorithms, the master theorem for divide-and-conquer recurrences provides an asymptotic analysis (using Big O notation) for recurrence relations of types that occur in the analysis of many divide and conquer algorithms. The approach was first presented by Jon Bentley, Dorothea Blostein (née Haken), and James B. Saxe in 1980, where it was described as a "unifying method" for solving such recurrences. The name "master theorem" was popularized by the widely-used algorithms textbook Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.