Méthode de Ruffini-HornerEn mathématiques et algorithmique, la méthode de Ruffini-Horner, connue aussi sous les noms de méthode de Horner, algorithme de Ruffini-Horner ou règle de Ruffini, se décline sur plusieurs niveaux. Elle permet de calculer la valeur d'un polynôme en x. Elle présente un algorithme simple effectuant la division euclidienne d'un polynôme par X − x. Mais elle offre aussi une méthode de changement de variable X = x + Y dans un polynôme. C'est sous cette forme qu'elle est utilisée pour déterminer une valeur approchée d'une racine d'un polynôme.
Polynôme de JacobiEn mathématiques, les polynômes de Jacobi sont une classe de polynômes orthogonaux. Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie : où est le symbole de Pochhammer pour la factorielle croissante, (Abramowitz & Stegun p561.) et ainsi, nous avons l'expression explicite pour laquelle la valeur finale est Ici, pour l'entier et est la fonction gamma usuelle, qui possède la propriété pour .
Algèbre classiqueL'algèbre élémentaire, également appelée algèbre classique est la branche des mathématiques dont l'objet est l'étude des opérations algébriques (addition, multiplication, soustraction, division et extraction de racine) sur les nombres réels ou complexes, et dont l'objectif principal est la résolution d'équations polynomiales. Le qualificatif d'élémentaire (ou classique) est destiné à la différencier de l'algèbre générale (ou moderne), qui étudie les structures algébriques (groupes, corps commutatifs, etc.
Tour de corpsEn mathématiques, une tour de corps est une suite d'extensions de corps Le nom de tour vient du fait qu'une telle suite est souvent écrite sous la forme Une tour de corps peut aussi bien être finie qu'infinie. est une tour de corps finie composée des corps de nombres rationnels, réels puis complexes. Soit la suite définie par F0 = le corps Q des rationnels et (i.e. Fn+1 est obtenu à partir de Fn en ajoutant la racine 2n-ième de 2). Cette tour de corps est infinie.
Théorie algorithmique des nombresLa théorie algorithmique des nombres ou théorie calculatoire des nombres est une branche des mathématiques et de l'informatique qui essaie de fournir des solutions concrètes et efficaces à des problèmes calculatoires rencontrés en théorie des nombres. Par exemple, le théorème fondamental de l'arithmétique, qui affirme que tout nombre entier se décompose de manière unique en produit de nombres premiers, donne lieu à l'étude d'algorithmes de factorisation efficace.
Sparse polynomialIn mathematics, a sparse polynomial (also lacunary polynomial or fewnomial) is a polynomial that has far fewer terms than its degree and number of variables would suggest. For example, x10 + 3x3 - 1 is a sparse polynomial as it is a trinomial with a degree of 10. The motivation for studying sparse polynomials is to concentrate on the structure of a polynomial's monomials instead of its degree, as one can see, for instance, by comparing Bernstein-Kushnirenko theorem with Bezout's theorem.
Nombre parfaitEn arithmétique, un nombre parfait est un entier naturel égal à la moitié de la somme de ses diviseurs ou encore à la somme de ses diviseurs stricts. Plus formellement, un nombre parfait n est un entier tel que σ(n) = 2n où σ(n) est la somme des diviseurs positifs de n. Ainsi 6 est un nombre parfait car ses diviseurs entiers sont 1, 2, 3 et 6, et il vérifie bien 2 × 6 = 12 = 1 + 2 + 3 + 6, ou encore 6 = 1 + 2 + 3. Voir la . Dans le Livre IX de ses Éléments, Euclide, au , a démontré que si M = 2 − 1 est premier, alors M(M + 1)/2 = 2(2 – 1) est parfait.
Polynôme minimal d'un endomorphismeLe polynôme minimal est un outil qui permet d'utiliser en algèbre linéaire des résultats de la théorie des polynômes. Il est en effet possible d'appliquer un polynôme à un endomorphisme, comme expliqué dans l'article intérêt du concept de polynôme d'endomorphisme. Il est défini comme le polynôme unitaire (son coefficient de plus haut degré est égal à 1) de plus petit degré qui annule un endomorphisme, c'est-à-dire une application linéaire d'un espace vectoriel dans lui-même.
Polynôme associé de LegendreEn mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ l ≤ m avec l et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair.
Master theoremEn informatique, et plus particulièrement en analyse de la complexité des algorithmes, le master theorem ou théorème sur les récurrences de partition permet d'obtenir une solution en termes asymptotiques (en utilisant les notations en O) pour des relations de récurrence d'un certain type rencontrées dans l'analyse de complexité d'algorithmes qui sont régis par le paradigme diviser pour régner.