The Hamiltonian of the harmonic oscillator with an attractive delta '-interaction centred at the origin as approximated by the one with a triple of attractive delta-interactions
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...
In materials, certain approximated symmetry operations can exist in a lower-order approximation of the effective model but are good enough to influence the physical responses of the system, and these approximated symmetries were recently dubbed "quasisymme ...
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure ...
We expand Hilbert series technologies in effective field theory for the inclusion of massive particles, enabling, among other things, the enumeration of operator bases for non-linearly realized gauge theories. We find that the Higgs mechanism is manifest a ...
We present a nonperturbative recipe for directly computing the S-matrix in strongly-coupled QFTs. The method makes use of spectral data obtained in a Hamiltonian framework and can be applied to a wide range of theories, including potentially QCD. We demons ...
Quantum Field Theory(QFT) as one of the most promising frameworks to study high energy and condensed matter physics, has been mostly developed by perturbative methods. However, perturbative methods can only capture a small island of the space of QFTs.QFT ...
The standard way to do computations in Quantum Field Theory (QFT) often results in the requirement of dramatic cancellations between contributions induced by a "heavy" sector into the physical observables of the "light" (or low energy) sector - the phenome ...