Anna Fontcuberta i Morral2014 Associate Professor at the Institut des Matériaux, EPFL
2008 Assistant Professor Tenure Track at the Institut des Matériaux, EPFL
2009 Habilitation in Physics, Technische Universität München
2005-2010 Marie Curie Excellence Grant Team Leader at Walter Schottky Institut, Technische Universität München, on leave from Centre National de la Recherche Scientifique (CNRS, France)
2004-2005 Visiting Scientist at the California Institute of Technology, on leave from CNRS; Senior Scientist and co-founder of Aonex Technologies (a startup company for large area layer transfer of InP and Ge on foreign substrates for the main application of multi-junction solar cells)
2003 Permanent Research Fellow at CNRS, Ecole Polytechnique, France
2001-2002 Postdoctoral Scholar at the California Institute of Technology
Study of wafer bonding and hydrogen-induced exfoliation processes for integration of mismatched materials in views of photovoltaic applications
Sponsor: Professor Harry A. Atwater
1998-2001 PhD in Materials Science, Ecole Polytechnique
Study of polymorphous silicon: growth mechanisms, optical and structural properties. Application to Solar Cells and Thin Film Transistors
Advisor: Pere Roca i Cabarrocas
1997-1998 Diplôme dEtudes Approfondis (D.E.A.) in Materials Science at Université Paris XI, France .
1993-1997 BA in Physics at Universitat de Barcelona
Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). Véronique MichaudBackground:
1994 Habilitation à diriger des recherches ( INPG, France)
1991 PhD in Materials Engineering ( MIT, USA)
1987 Ingénieur Civil des Mines ( Ecole des Mines de Paris, France)
Activities:
Since January 2018: Associate Dean of Engineering, in charge of Education
June 2012-Dec.2017: Head of the Materials Science and Engineering Section
Since April 2017: Associate Professor at EPFL
2009-2017 : Professeur Titulaire at EPFL
1997-2009: Researcher at EPFL
1994-1997 : Chef de Travaux au laboratoire MSS-MAT, Ecole Centrale Paris (France)
1991-1994 : Post-doctoral research associate, MIT (USA)
Author of about 300 publications of which 140 in peer-reviewed journals
Harald BruneOriginaire de Münich en Allemagne, né en 1961, Harald Brune obtient son diplôme en physique de l'Université Ludwig Maximilians en 1989. Après une thèse en chimie physique à l'Institut Fritz-Haber de la Société Max-Planck à Berlin il obtient son titre de docteur ès sciences en 1992. Dès cela, il rejoint le groupe du Prof. K. Kern à l'Institut de physique expérimentale à l'EPFL. En 1995 il est chercheur invité à Copenhague travaillant en modélisation chez le Prof. J. Nørskov. De retour à l'EPFL, il se voit décerné le prix Latsis EPFL 1996 pour ses études par microscopie à effet tunnel de processus atomiques déterminants la croissance cristalline de couches minces. En 1998 il obtient son habilitation (venia legendi) en Physique et est nommé Maître d'enseignement et de recherche (MER) en nanophysique à l'EPFL. La même année il recoit une offre de Professeur Ordinaire (C4) de l'Université Philipps de Marburg. Début 1999 il réfuse cette offre et accepte un poste de Professeur Extraordinaire à l'EPFL et s'installe au sein de l'Institut de la Physique des Nanostructures. Il est nommé Professeur Ordinaire en 2005. Sa recherche porte sur les propriétés physiques (en particulier le magnétisme et la structure électronique) de nouvelles formes de la matière condensée comme des nanostructures et des couches ultra-minces. Il s'intéresse également à la catalyse hétérogène sur des systèmes inspirés dans leur composition et taille par celle des sites actives dans les enzymes en biologie. Il enseigne la Physique Générale pour ingénieurs, la Physique des matériaux solides pour physiciens, les méthodes expérimentales pour physiciens, ainsi que la Physique des surfaces, interfaces et nanostrcutures à l'école doctorale.
Georges WagnièresGeorges Wagnières received his diploma degree (MSc) in physics from the University of Lausanne, Switzerland, in 1986. He obtained his doctorate in science (PhD) in physics (Biomedical optics) from the Swiss Federal Institute of Technology at Lausanne (EPFL) in 1992 and did a postdoctoral work in the Wellman Laboratories of Photomedicine (Harvard Medical School), Boston, USA, from 1993 to 1994. He also obtained a Master degree in Management of Technology delivered by the Ecole des Hautes Etudes Commerciales (HEC) of Lausanne University and the EPFL in 2001. Georges Wagnières manages a research group active in the fields of: - Detection of early superficial cancers by fluorescence imaging. - Characterization of early superficial cancers by high magnification narrow band imaging. - In vivo and in vitro measurement of the vascular and tissular oxygen concentration by time-resolved luminescence spectroscopy and imaging. - Preclinical and clinical study of new photosensitizers for photodynamic therapy (PDT). - Treatment of neurodegenerative conditions (Alzheimer, Parkinson's diseases) by photobiomodulation. - Preclinical and clinical photodynamic therapy of inflammatory bowel diseases and atheroscerotic plaque. - Improvement of the selective vascular extravasation of chemotherapeutic agents by PDT. - Monitoring the light dosimetry during PDT by fluorescence spectroscopy and imaging. - Monitoring laser treatments of the retina by reflectance imaging. - Light dosimetry and tissue optical spectroscopy. - Radiometry. - Development of light delivery systems for biomedical applications. Georges Wagnières is also co-founder and was chairman of one spin-off companies: - Medlight SA, founded in July 1997, which develops, produces and commercializes light distributors for photodynamic therapy. Georges Wagnières has currently authored more than 235 papers (more than 150 in international journals with review board) and is inventor of 18 patents. He supervised 12 PhD students up to now, and currently teaches biomedical optics and photomedicine in master programs and doctoral schools. In addition, he gives the course entitled "Physique Générale I" to biology first year students registered to the Biology School of the Lausanne's University. MAIN PUBLICATIONS Please visit: https://www.epfl.ch/labs/lifmet/wagnieres/publications/ Claudio BruschiniClaudio Bruschini holds an MSc in high energy physics from the University of Genova and a PhD in Applied Sciences from the Vrije Universiteit Brussel (VUB). He started his career with INFN (Italy, 1993), in the WA92 CERN collaboration (particle physics), and then moved to CERN as a Fellow in the European GP-MIMD2 project, attached to the NA48 collaboration (particle physics, parallel programming, 1994-1995). He then started his close collaboration with EPFL, first in the DeTeC (Demining Technology Center) project (sensors for landmine detection/humanitarian demining, 1996-1997). After DeTeC's end, he started the first of a series of fruitful collaborations with the Vrije Universiteit Brussel (VUB) on humanitarian demining related R&D (1998). This was followed by the EUDEM survey project (The European Union in Humanitarian Demining, 1998), the EUDEM2 three year EC sponsored support measure (www.eudem.info, 2001-2004), and the DELVE support action (www.delve.vub.ac.be, 2007). In parallel he started working within the EPFL's AQUA group (Advanced Quantum Architectures, Edoardo Charbon), on topics as diverse as ultrasonic sensors for in-air application, optical 3D and high speed 2D sensing, sensor networks, or tracking/motion capture systems, in particular for the preparation of research projects. This culminated in the European MEGAFRAME (www.megaframe.eu, FP6, 2006-2010, SPAD arrays and related in-pixel time stamping electronics in deep submicron CMOS technology) and SPADnet (www.spadnet.eu, FP7, 2010-2014, networked SPAD arrays for Positron Emission Tomography) projects, coordinated by EPFL-AQUA. As from 2009 he also worked with Dario Floreano on the management of the CURVACE Curved Artificial Compound Eyes FP7 project (www.curvace.org), coordinated by EPFL-LIS. He was also active with CHUV (Lausanne University Hospital) within EndoTOFPET-US (endoscopic PET) as well as on a CTI project devoted to the development of a new hand-held standalone tool for tracer-guided medical procedures. In 2014 he had also the pleasure of joining the EPFL ICLAB of Christian Enz during its ramp-up phase, collaborating on device related topics (SNF GigaRadMOST) and biomedical R&D (NanoTera WiseSkin). Claudio is now fully with EPFL’s Advanced Quantum Architecture (AQUA). He has also been active as independent scientific consultant, under the label CBR Scientific Consulting, on the preparation of (European) R&D project proposals and the execution of individual studies, and worked in 2006 for a local start-up as operations manager and R&D advisor.... but this is another story. An unauthorized early biography is available at http://lami.epfl.ch/team/claudiob/...