Startup

Excellness Biotech SA

Related people (148)
Joachim Lingner
PhD at the Biocenter, University of Basel 1989-1992 (Supervisor: Walter Keller). Postdoc at the Howard Hughes Medical Institute, University of Colorado at Boulder 1993-1997 (Supervisor: Thomas Cech). Junior group leader at ISREC 1997-2001. Senior group leader at ISREC since 2002. Associate Professor at EPFL 2005-2008. Full Professor at EPFL since 2009. Honors: START-fellowship from the Swiss National Science Foundation in 1997; Friedrich Miescher Prize from the Swiss Society of Biochemistry in 2002; EMBO member in 2005; ERC advanced investigator grant in 2008.
Georges Wagnières
Georges Wagnières received his diploma degree (MSc) in physics from the University of Lausanne, Switzerland, in 1986. He obtained his doctorate in science (PhD) in physics (Biomedical optics) from the Swiss Federal Institute of Technology at Lausanne (EPFL) in 1992 and did a postdoctoral work in the Wellman Laboratories of Photomedicine (Harvard Medical School), Boston, USA, from 1993 to 1994. He also obtained a Master degree in Management of Technology delivered by the Ecole des Hautes Etudes Commerciales (HEC) of Lausanne University and the EPFL in 2001. Georges Wagnières manages a research group active in the fields of:  - Detection of early superficial cancers by fluorescence imaging. - Characterization of early superficial cancers by high magnification narrow band imaging. - In vivo and in vitro measurement of the vascular and tissular oxygen concentration by time-resolved luminescence spectroscopy and imaging. - Preclinical and clinical study of new photosensitizers for photodynamic therapy (PDT). - Treatment of neurodegenerative conditions (Alzheimer, Parkinson's diseases) by photobiomodulation. - Preclinical and clinical photodynamic therapy of inflammatory bowel diseases and atheroscerotic plaque. - Improvement of the selective vascular extravasation of chemotherapeutic agents by PDT. - Monitoring the light dosimetry during PDT by fluorescence spectroscopy and imaging. - Monitoring laser treatments of the retina by reflectance imaging. - Light dosimetry and tissue optical spectroscopy. - Radiometry. - Development of light delivery systems for biomedical applications.  Georges Wagnières is also co-founder and was chairman of one spin-off companies: - Medlight SA, founded in July 1997, which develops, produces and commercializes light distributors for photodynamic therapy.  Georges Wagnières has currently authored more than 235 papers (more than 150 in international journals with review board) and is inventor of 18 patents. He supervised 12 PhD students up to now, and currently teaches biomedical optics and photomedicine in master programs and doctoral schools. In addition, he gives the course entitled "Physique Générale I" to biology first year students registered to the Biology School of the Lausanne's University.  MAIN PUBLICATIONS Please visit: https://www.epfl.ch/labs/lifmet/wagnieres/publications/
Henry Markram
Henry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80’s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps. He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band. He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx – an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction. He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the “tabula rasa principle” which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing. In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markram’s lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring. At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the “blue-print” of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBM’s most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10’000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markram’s lab has now set the agenda towards whole brain and molecular modeling. With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the “Intense World Syndrome” proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism. Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Nico de Rooij
Nico de Rooij is Professor Emeritus of EPFL and previous Vice-President of CSEM SA. He was Professor of Microengineering at EPFL and Head of the Sensors, Actuators and Microsystems Laboratory ( SAMLAB ) from 2009 to 2016. At CSEM SA he was responsible for the EPFL CSEM coordination from 2012 to 2016. His research activities include the design, micro fabrication and application of miniaturized silicon based sensors, actuators, and microsystems. He authored and coauthored over 400 published journal papers in these areas. He was Professor at the University of Neuchatel and Head of the Sensors, Actuators and Microsystems Laboratory (SAMLAB) from 1982 to 2008. Since October 1990 till October 1996 and again from October 2002 until June 2008, he has been the director of the Institute of Microtechnology of the University of Neuchatel (IMT UniNE). He lectured at the Swiss Federal Institute of Technology, Zurich (ETHZ), and since 1989, he has been a part-time professor at the Swiss Federal Institute of Technology, Lausanne (EPFL). He has been appointed Vice-President of the CSEM SA in February 2008 and headed the newly created Microsystems Technology Division of CSEM SA, from 2008 until 2012. He was Director of EPFL'’s Institute of Microengineering (EPFL STI IMT) from 2009 to 2012, following the transfer of IMT Uni-NE to EPFL. Dr. de Rooij is a Fellow of the IEEE and Fellow of the Institute of Physics (UK). He recieved the IEEE Jun-Ichi Nishizawa Gold Medal , the Schlumberger Prize as well as the MNE Fellow Award 2016 . He was awarded a Visiting Investigatorship Program (VIP) in MEMS/NEMS Systems by the A*STAR Science and Engineering Council (SERC) , Singapore, hosted by SIMTech , for the period 2005-2008. Prof. de Rooij is Corresponding Member of the Royal Netherlands Academy of Arts and Sciences and Individual Member of the Swiss Academy of Engineering Sciences . He has been serving on the Editorial Boards of the IEEE/ASME Journal of Microelectromechanical Systems (IEEE JMEMS) , the IEEE proceedings , the Journal of Micromechanics and Microengineering, JM & M, , the Sensors and Actuators ,and Sensors and Materials . He was Member of the Information and Communication technology jury of the BBVA Foundation Frontiers of Knowledge Awards from 2009 to 2012. Dr. de Rooij is (or was) Member of numerous international steering committees of conference series as well as technical paper review panels including the steering committee of the International Conference on Solid-State Sensors and Actuators and of Eurosensors. He acted as European Program Chairman of Transducers '87 and General Chairman of Transducers '89, Montreux, Switzerland. He has supervised more than 70 Ph.D. students, who have successfully completed their Ph.D. thesis. He received his M.Sc. degree in physical chemistry from the State University of Utrecht, The Netherlands, in 1975, and a Ph.D. degree from Twente University of Technology, The Netherlands, in 1978. From 1978 to 1982, he worked at the Research and Development Department of Cordis Europa N.V., The Netherlands.
Christian Depeursinge
Christian Depeursinge is the leader of the Microvision and Micro-Diagnostics (MVD) group at the Advanced Photonics Laboratory of the Institute of Microengineering at EPFL (Ecole Polytechnique Fédérale de Lausanne), Switzerland (http://apl.epfl.ch/muvision). His research and expertise in biomedical engineering and optics is internationally acknowledged. His current research topics include coherent and incoherent Imaging applied to diagnostics in biology, His research group pioneered in the development of DHM technology. He worked on several projects developed in cooperation with European and international partners. He is author and co-author of over 100 papers published in peer reviewed journals, several book chapters and more than 30 patents. He has given more than 20 invited lectures and plenaries in the last five years. He developed many projects in cooperation with national and international industries. He is co-founder of a start-up company (Lyncée Tec SA: www.Lynceetec.com). He is currently teaching at EPFL and occasionally in foreign universities and institutes.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.