Numerical Algorithms and High-Performance Computing - CADMOS Chair
Laboratory
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Based on the spectral divide-and-conquer algorithm by Nakatsukasa and Higham [SIAM J. Sci. Comput., 35(3):A1325{A1349, 2013], we propose a new algorithm for computing all the eigenvalues and eigenvectors of a symmetric banded matrix. For this purpose, we c ...
We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a ...
We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises proble ...
A Quasi Toeplitz (QT) matrix is a semi-infinite matrix of the kind A=T(a)+E whereT(a)=(aj−i)i,j∈Z+, E=(ei,j)i,j∈Z+ is compact and the norms ∥a∥W=∑i∈Z∣a∣j and $|E|_{ ...
Matrix equations of the kind A(1)X(2)+A(0)X+A(-1)=X, where both the matrix coefficients and the unknown are semi-infinite matrices belonging to a Banach algebra, are considered. These equations, where coefficients are quasi-Toeplitz matrices, are encounter ...
The efficient and accurate QR decomposition for matrices with hierarchical low-rank structures, such as HODLR and hierarchical matrices, has been challenging. Existing structure-exploiting algorithms are prone to numerical instability as they proceed indi- ...
We consider the discretization of time-space diffusion equations with fractional derivatives in space and either 1D or 2D spatial domains. The use of implicit Euler scheme in time and finite differences or finite elements in space, leads to a sequence of d ...
In this work we introduce a two-level preconditioner for the efficient solution of large scale saddlepoint linear systems arising from the finite element (FE) discretization of parametrized Stokes equations.The proposed preconditioner extends the Multi Spa ...
Consider the problem of minimizing a convex differentiable function on the probability simplex, spectrahedron, or set of quantum density matrices. We prove that the expo-nentiated gradient method with Armijo line search always converges to the optimum, if ...