We propose two decompositions that help to summarize and describe high-dimensional tail dependence within the framework of regular variation. We use a transformation to define a vector space on the positive orthant and show that transformed-linear operatio ...
We consider a divergence-form elliptic difference operator on the lattice Zd, with a coefficient matrix that is an i.i.d. perturbation of the identity matrix. Recently, Bourgain introduced novel techniques from harmonic analysis to prove the convergence of ...
Let G be a classical group with natural module V over an algebraically closed field of good characteristic. For every unipotent element u of G, we describe the Jordan block sizes of u on the irreducible G-modules which occur as compositio ...
We study harmonic mappings of the form , where h is an analytic function. In particular, we are interested in the index (a generalized multiplicity) of the zeros of such functions. Outside the critical set of f, where the Jacobian of f is non-vanishing, it ...
In this thesis we address the computation of a spectral decomposition for symmetric
banded matrices. In light of dealing with large-scale matrices, where classical dense
linear algebra routines are not applicable, it is essential to design alternative tech ...
Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most s ...
The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A - lambda B requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations re ...
The purpose of this thesis is to provide an intrinsic proof of a Gauss-Bonnet-Chern formula for complete Riemannian manifolds with finitely many conical singularities and asymptotically conical ends. A geometric invariant is associated to the link of both ...
We show that the configuration spaces of a product of parallelizable manifolds may be recovered from those of the factors as the Boardman-Vogt tensor product of right modules over the operads of little cubes of the appropriate dimension. We also discuss an ...
In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1- ...