SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Algèbre de LieEn mathématiques, une algèbre de Lie, nommée en l'honneur du mathématicien Sophus Lie, est un espace vectoriel qui est muni d'un crochet de Lie, c'est-à-dire d'une loi de composition interne bilinéaire, alternée, et qui vérifie la relation de Jacobi. Une algèbre de Lie est un cas particulier d'algèbre sur un corps. Soit K un corps commutatif. Une algèbre de Lie sur K est un espace vectoriel sur K muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Le produit est appelé crochet de Lie (ou simplement crochet) de et .
Topologievignette|Déformation continue d'une tasse avec une anse, en un tore (bouée). thumb|Un ruban de Möbius est une surface fermée dont le bord se réduit à un cercle. De tels objets sont des sujets étudiés par la topologie. La topologie est la branche des mathématiques qui étudie les propriétés d'objets géométriques préservées par déformation continue sans arrachage ni recollement, comme un élastique que l’on peut tendre sans le rompre.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Langage de programmation de haut niveauEn programmation informatique, un langage de programmation à haut niveau d'abstraction généralement appelé langage de haut niveau est un langage de programmation orienté autour du problème à résoudre, qui permet d'écrire des programmes en utilisant des mots usuels des langues naturelles (très souvent de l'anglais) et des symboles mathématiques familiers. Un langage de haut niveau fait abstraction des caractéristiques techniques du matériel utilisé pour exécuter le programme, tels que les registres et les drapeaux du processeur.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Langage formelUn langage formel, en mathématiques, en informatique et en linguistique, est un ensemble de mots. L'alphabet d'un langage formel est l'ensemble des symboles, lettres ou lexèmes qui servent à construire les mots du langage ; souvent, on suppose que cet alphabet est fini. La théorie des langages formels a pour objectif de décrire les langages formels. Les mots sont des suites d'éléments de cet alphabet ; les mots qui appartiennent à un langage formel particulier sont parfois appelés mots bien formés ou formules bien formées.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.