Binomial proportion confidence intervalIn statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability p when only the number of experiments n and the number of successes nS are known. There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution.
Modèle avec excès de zérosIn statistics, a zero-inflated model is a statistical model based on a zero-inflated probability distribution, i.e. a distribution that allows for frequent zero-valued observations. Zero-inflated models are commonly used in the analysis of count data, such as the number of visits a patient makes to the emergency room in one year, or the number of fish caught in one day in one lake. Count data can take values of 0, 1, 2, ... (non-negative integer values).
Théorème de Bayesvignette|Théorème de Bayes sur néon bleu, dans les bureaux d’Autonomy à Cambridge. Le théorème de Bayes ( ) est l'un des principaux théorèmes de la théorie des probabilités. Il est aussi utilisé en statistiques du fait de son application, qui permet de déterminer la probabilité qu'un événement arrive à partir d'un autre évènement qui s'est réalisé, notamment quand ces deux évènements sont interdépendants.
Natural exponential familyIn probability and statistics, a natural exponential family (NEF) is a class of probability distributions that is a special case of an exponential family (EF). The natural exponential families (NEF) are a subset of the exponential families. A NEF is an exponential family in which the natural parameter η and the natural statistic T(x) are both the identity. A distribution in an exponential family with parameter θ can be written with probability density function (PDF) where and are known functions.
Algorithme espérance-maximisationL'algorithme espérance-maximisation (en anglais expectation-maximization algorithm, souvent abrégé EM) est un algorithme itératif qui permet de trouver les paramètres du maximum de vraisemblance d'un modèle probabiliste lorsque ce dernier dépend de variables latentes non observables. Il a été proposé par Dempster et al. en 1977. De nombreuses variantes ont par la suite été proposées, formant une classe entière d'algorithmes.
Dirichlet negative multinomial distributionIn probability theory and statistics, the Dirichlet negative multinomial distribution is a multivariate distribution on the non-negative integers. It is a multivariate extension of the beta negative binomial distribution. It is also a generalization of the negative multinomial distribution (NM(k, p)) allowing for heterogeneity or overdispersion to the probability vector. It is used in quantitative marketing research to flexibly model the number of household transactions across multiple brands.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Compound Poisson distributionIn probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution. Suppose that i.e., N is a random variable whose distribution is a Poisson distribution with expected value λ, and that are identically distributed random variables that are mutually independent and also independent of N.
Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Marginal likelihoodA marginal likelihood is a likelihood function that has been integrated over the parameter space. In Bayesian statistics, it represents the probability of generating the observed sample from a prior and is therefore often referred to as model evidence or simply evidence. Given a set of independent identically distributed data points where according to some probability distribution parameterized by , where itself is a random variable described by a distribution, i.e.