In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.
Suppose that
i.e., N is a random variable whose distribution is a Poisson distribution with expected value λ, and that
are identically distributed random variables that are mutually independent and also independent of N. Then the probability distribution of the sum of i.i.d. random variables
is a compound Poisson distribution.
In the case N = 0, then this is a sum of 0 terms, so the value of Y is 0. Hence the conditional distribution of Y given that N = 0 is a degenerate distribution.
The compound Poisson distribution is obtained by marginalising the joint distribution of (Y,N) over N, and this joint distribution can be obtained by combining the conditional distribution Y | N with the marginal distribution of N.
The expected value and the variance of the compound distribution can be derived in a simple way from law of total expectation and the law of total variance. Thus
Then, since E(N) = Var(N) if N is Poisson-distributed, these formulae can be reduced to
The probability distribution of Y can be determined in terms of characteristic functions:
and hence, using the probability-generating function of the Poisson distribution, we have
An alternative approach is via cumulant generating functions:
Via the law of total cumulance it can be shown that, if the mean of the Poisson distribution λ = 1, the cumulants of Y are the same as the moments of X1.
It can be shown that every infinitely divisible probability distribution is a limit of compound Poisson distributions. And compound Poisson distributions is infinitely divisible by the definition.
When are positive integer-valued i.i.d random variables with , then this compound Poisson distribution is named discrete compound Poisson distribution (or stuttering-Poisson distribution) .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
This class provides a hands-on introduction to statistics and data science, with a focus on causal inference, applications to sustainability issues using Python, and dissemination of scientific result
En théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
En mathématiques, et plus particulièrement en théorie des probabilités, la fonction génératrice des probabilités (ou fonction génératrice des moments factoriels) d'une variable aléatoire (à valeurs dans les entiers naturels) est la série entière associée à la fonction de masse de cette variable aléatoire. La fonction génératrice des probabilités est utile car elle permet de caractériser entièrement la fonction de masse. La fonction génératrice des probabilités est usuellement identifiée à sa somme.
In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, .
Explore des modèles stochastiques pour les communications, couvrant la moyenne, la variance, les fonctions caractéristiques, les inégalités, diverses variables aléatoires discrètes et continues, et les propriétés de différentes distributions.
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cros ...
Correct prediction of particle transport by surface waves is crucial in many practical applications such as search and rescue or salvage operations and pollution tracking and clean-up efforts. Recent results by Deike et al. (J. Fluid Mech., vol. 829, 2017, ...