Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Déplacez-vous dans les probabilités, les statistiques, les paradoxes et les variables aléatoires, montrant leurs applications et propriétés du monde réel.
Explore l'inférence bayésienne pour la précision dans le modèle gaussien avec la moyenne connue, en utilisant un précédent Gamma et en discutant des précédents subjectifs vs objectifs.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Explore les familles exponentielles, les distributions de Bernoulli, l'estimation des paramètres et les distributions d'entropie maximale dans la modélisation statistique.
Explore l'échantillonnage de rejet pour générer des valeurs d'échantillon à partir d'une distribution cible, ainsi que l'inférence bayésienne à l'aide de MCMC.
Discute de l'inférence bayésienne pour la moyenne d'une distribution gaussienne avec variance connue, couvrant la moyenne postérieure, la variance et l'estimateur MAP.