Continuum limitIn mathematical physics and mathematics, the continuum limit or scaling limit of a lattice model refers to its behaviour in the limit as the lattice spacing goes to zero. It is often useful to use lattice models to approximate real-world processes, such as Brownian motion. Indeed, according to Donsker's theorem, the discrete random walk would, in the scaling limit, approach the true Brownian motion. The term continuum limit mostly finds use in the physical sciences, often in reference to models of aspects of quantum physics, while the term scaling limit is more common in mathematical use.
Sigma modelIn physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model.
Ising critical exponentsThis article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.
Conformal groupIn mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space. Several specific conformal groups are particularly important: The conformal orthogonal group. If V is a vector space with a quadratic form Q, then the conformal orthogonal group CO(V, Q) is the group of linear transformations T of V for which there exists a scalar λ such that for all x in V For a definite quadratic form, the conformal orthogonal group is equal to the orthogonal group times the group of dilations.
Scaling dimensionIn theoretical physics, the scaling dimension, or simply dimension, of a local operator in a quantum field theory characterizes the rescaling properties of the operator under spacetime dilations . If the quantum field theory is scale invariant, scaling dimensions of operators are fixed numbers, otherwise they are functions of the distance scale. In a scale invariant quantum field theory, by definition each operator O acquires under a dilation a factor , where is a number called the scaling dimension of O.
Théorie de LandauEn physique, la théorie de Landau est une théorie des transitions de phases. Elle doit son nom au théoricien russe Lev Landau. Cette théorie repose sur un développement polynomial de l'énergie libre en fonction d'un paramètre, appelé paramètre d'ordre, au voisinage de la transition. Cette théorie s'applique aux transitions de phases marquées par la perte de certains éléments de symétrie. La forme du potentiel de Landau est alors contrainte par les symétries des phases en présence, et peut être donnée par la théorie des groupes.
Lie algebra extensionIn the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
Phénomène critiquevignette|Point critique de l'éthane : 1. état subcritique, liquide et gaz ; 2. opalescence critique ; 3. fluide supercritique. En physique, un phénomène critique est un phénomène associé à une transition de phase du deuxième ordre d'un système thermodynamique. Par exemple la transition de phase ferromagnétique et le comportement au voisinage du point critique liquide-gaz. La plupart des phénomènes critiques proviennent d'une divergence de la ou d'un ralentissement de la dynamique.
Théorie de la percolationLa théorie de la percolation est une branche de la physique statistique et mathématique qui s'intéresse aux caractéristiques des milieux aléatoires, plus précisément aux ensembles de sommets connectés dans un graphe aléatoire. Cette théorie s'applique notamment en science des matériaux pour formaliser les propriétés d'écoulement dans les milieux poreux et pour la modélisation de phénomènes naturels, comme les incendies. L’histoire de la percolation prend ses racines dans l’industrie du charbon.
Lattice model (physics)In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory.