Concept

Phénomène critique

Résumé
vignette|Point critique de l'éthane : 1. état subcritique, liquide et gaz ; 2. opalescence critique ; 3. fluide supercritique. En physique, un phénomène critique est un phénomène associé à une transition de phase du deuxième ordre d'un système thermodynamique. Par exemple la transition de phase ferromagnétique et le comportement au voisinage du point critique liquide-gaz. La plupart des phénomènes critiques proviennent d'une divergence de la ou d'un ralentissement de la dynamique. Les phénomènes critiques présentent des relations d'échelle entre différentes grandeurs, une forme d'universalité et un comportement fractal. Le comportement critique diffère de l'approximation du champ moyen car les corrélations deviennent de plus en plus importantes lorsque le système approche du point critique. De nombreuses propriétés du comportement critique d'un système peuvent être décrites dans le cadre du groupe de renormalisation. Le modèle d'Ising du ferromagnétisme en deux dimensions avec des spins pouvant prendre deux positions : +1 et -1, peut servir d'exemple pour expliquer l'origine physique des phénomènes critiques. En dessous de la température de Curie ou température critique Tc, le système présente un ordre ferromagnétique à grande échelle ; au-dessus, il est paramagnétique et apparemment désordonné : à la limite, à la température zéro, le système ne peut prendre qu'un seul signe global, +1 ou -1 ; en dessous de Tc, le système est encore dans un état globalement magnétisé mais des grappes du signe opposé apparaissent. Lorsque la température augmente, ces grappes commencent à contenir elles-mêmes de plus petites grappes de signe opposé. Leur taille typique, notée est la et croît avec la température jusqu'à ce qu'elle diverge à Tc ; au-dessus de Tc, le système devient un amas de grappes qui n'a plus de magnétisation globale. Le système est alors globalement désordonné mais il contient des grappes ordonnées ; la longueur de corrélation (la taille typique des grappes ordonnées) diminue maintenant avec la température et à la limite, à une température infinie, le système devient complètement désordonné et la longueur de corrélation redevient nulle.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (14)
PHYS-435: Statistical physics III
This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
PHYS-316: Statistical physics II
Introduction à la théorie des transitions de phase
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Afficher plus
Séances de cours associées (93)
Structures métalliques: Moments de décharge élastique
Couvre le calcul des longueurs critiques pour la décharge dans les structures métalliques.
Renormalisation et mise à l'échelle
Explore la renormalisation, la mise à l'échelle, les points critiques, les exposants et les transitions de phase dans la théorie des champs conforme et la gravité quantique.
Phases de transition
Explore les transitions de phase, les points critiques, l'opalescence et la métastabilité des substances.
Afficher plus
Publications associées (329)

Large impact of phonon lineshapes on the superconductivity of solid hydrogen

Lorenzo Monacelli

Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture obsolete questioning standard approaches for modeling sup ...
Nature Portfolio2024

Magnetic structure and magnetoelectric properties of the spin-flop phase in LiFePO4

Ellen Fogh, Paola Caterina Forino, Sofie Janas

We investigate the magnetic structure and magnetoelectric(ME) effect in the high -field phase of the antiferromagnet LiFePO 4 above the critical field of 31 T. A neutron diffraction study in pulsed magnetic fields reveals the propagation vector to be q = 0 ...
Amer Physical Soc2024

A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime

Jean-François Molinari, Sacha Zenon Wattel

Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, w ...
2024
Afficher plus
Concepts associés (10)
Universality (dynamical systems)
In statistical mechanics, universality is the observation that there are properties for a large class of systems that are independent of the dynamical details of the system. Systems display universality in a scaling limit, when a large number of interacting parts come together. The modern meaning of the term was introduced by Leo Kadanoff in the 1960s, but a simpler version of the concept was already implicit in the van der Waals equation and in the earlier Landau theory of phase transitions, which did not incorporate scaling correctly.
Viscosité
La viscosité (du latin viscum, gui, glu) peut être définie comme l'ensemble des phénomènes de résistance au mouvement d'un fluide pour un écoulement avec ou sans turbulence. La viscosité diminue la liberté d'écoulement du fluide et dissipe son énergie. Deux grandeurs physiques caractérisent la viscosité : la viscosité dynamique (celle utilisée le plus généralement) et la seconde viscosité ou la viscosité de volume. On utilise aussi des grandeurs dérivées : fluidité, viscosité cinématique ou viscosité élongationnelle.
Percolation
vignette|Schéma de l'hydrosystème karstique : infiltrations dans le sol et la roche. La percolation (du latin percolare, « filtrer », « passer au travers ») désigne communément le passage d'un fluide à travers un milieu poreux ou fissuré plus ou moins perméable. Un exemple de la vie courante est celui de l'écoulement de l'eau au travers de la poudre de café moulu contenu dans le filtre d'une machine à café (d'où le nom de percolateur).
Afficher plus