CliqueA clique (AusE, CanE, ˈkliːk or ˈklɪk), in the social sciences, is a group of individuals who interact with one another and share similar interests rather than with others. Interacting with cliques is part of normative social development regardless of gender, ethnicity, or popularity. Although cliques are most commonly studied during adolescence and middle childhood development, they exist in all age groups. They are often bound together by shared social characteristics such as ethnicity and socioeconomic status.
K shortest path routingThe k shortest path routing problem is a generalization of the shortest path routing problem in a given network. It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths. Finding k shortest paths is possible by extending Dijkstra algorithm or Bellman-Ford algorithm. Since 1957 many papers were published on the k shortest path routing problem. Most of the fundamental works were done between 1960s and 2001.
Graph powerIn graph theory, a branch of mathematics, the kth power G^k of an undirected graph G is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most k. Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G^2 is called the square of G, G^3 is called the cube of G, etc. Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph.
Liste d'adjacencethumb|Pour chaque sommet, la liste d'adjacence est représentée en jaune. En algorithmique, une liste d'adjacence est une structure de données utilisée pour représenter un graphe. Cette représentation est particulièrement adaptée aux graphes creux (c'est-à-dire peu denses), contrairement à la matrice d'adjacence adaptée aux graphes denses. La liste d'adjacence d'un graphe non orienté, est la liste des voisins de chaque sommet. Celle d'un graphe orienté est typiquement, pour chaque sommet, la liste de nœuds à la tête de chaque arête ayant le sommet comme queue.
Largeur arborescenteEn théorie des graphes et en informatique théorique, la largeur arborescente ou largeur d'arbre d'un graphe (treewidth en anglais) est un nombre qui, intuitivement, mesure s'il est proche d'un arbre. Elle peut être définie de plusieurs manières, notamment en utilisant la décomposition arborescente. Souvent, un problème algorithmique facile sur les arbres est en fait facile pour les graphes qui ressemblent à des arbres. Ainsi, ce paramètre est souvent utilisé en algorithmique de graphes, notamment pour les schémas d'approximation polynomiaux et complexité paramétrée.
Six degrés de séparationLes six degrés de séparation (aussi appelée théorie des six poignées de main) est une théorie établie par le Hongrois Frigyes Karinthy en 1929 qui évoque la possibilité que toute personne sur le globe peut être reliée à n'importe quelle autre, au travers d'une chaîne de relations individuelles comprenant au plus six maillons. Avec le développement des technologies de l’information et de la communication, le degré de séparation a été mesuré sur le réseau social Facebook en 2011, en 2016, et sur l’échange de plusieurs milliards de messages instantanés étudiés en 2008 par et Jure Leskovec, chercheurs chez Microsoft, en analysant des discussions de Windows Live Messenger.
Problème de flot maximumthumb|right|Un exemple de graphe de flot avec un flot maximum. la source est , et le puits . Les nombres indiquent le flot et la capacité. Le problème de flot maximum consiste à trouver, dans un réseau de flot, un flot réalisable depuis une source unique et vers un puits unique qui soit maximum. Quelquefois, on ne s'intéresse qu'à la valeur de ce flot. Le s-t flot maximum (depuis la source s vers le puits t) est égal à la s-t coupe minimum du graphe, comme l'indique le théorème flot-max/coupe-min.
Matrice binaireUne matrice binaire est une matrice dont les coefficients sont soit 0, soit 1. En général ces coefficients sont les nombres de l'algèbre de Boole dans laquelle on appelle B l'ensemble constitué de deux éléments appelés valeurs de vérité {VRAI, FAUX}. Cet ensemble est aussi noté B = {1, 0} ou B = {⊤, ⊥}. On privilégie souvent la notation B = {1, 0}. Quand on programme des algorithmes utilisant ces matrices, la notation {VRAI, FAUX} peut coexister avec la notation {1, 0} car de nombreux langages acceptent ce polymorphisme.
Arbre couvrant de poids minimalthumb|L'arbre couvrant de poids minimal d'un graphe planaire. Chaque arête est identifiée avec son poids qui, ici, est approximativement sa longueur. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal (ACM), arbre couvrant minimum ou arbre sous-tendant minimum de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale (c'est-à-dire de poids inférieur ou égal à celui de tous les autres arbres couvrants du graphe).
Problème de plus court cheminvignette|Exemple d'un plus court chemin du sommet A au sommet F : (A, C, E, D, F). En théorie des graphes, le 'problème de plus court chemin' est le problème algorithmique qui consiste à trouver un chemin d'un sommet à un autre de façon que la somme des poids des arcs de ce chemin soit minimale. Il existe de nombreuses variantes de ce problème suivant que le graphe est fini, orienté ou non, que chaque arc ou arête possède ou non une valeur qui peut être un poids ou une longueur.