Graphe de CoxeterEn théorie des graphes, le graphe de Coxeter est un graphe cubique symétrique à 28 sommets et 42 arêtes. Il est nommé en l'honneur de H.S.M. Coxeter qui l'appelait « My graph ». Le diamètre du graphe de Coxeter, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 4 et sa maille, la longueur de son plus court cycle, est 7. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.
Algorithme de KruskalEn informatique, l'algorithme de Kruskal est un algorithme de recherche d'arbre recouvrant de poids minimum (ARPM) ou arbre couvrant minimum (ACM) dans un graphe connexe non-orienté et pondéré. Il a été conçu en 1956 par Joseph Kruskal. On considère un graphe connexe non-orienté et pondéré : chaque arête possède un poids qui est un nombre qui représente le coût de cette arête. Dans un tel graphe, un arbre couvrant est un sous-graphe connexe sans cycle qui contient tous les sommets du graphe.
Principe des tiroirsEn mathématiques, le principe des tiroirs de Dirichlet, affirme que, sans perte de généralité, si chaussettes sont rangées dans tiroirs, alors au moins un tiroir contient plus d’une chaussette. Mathématiquement, le principe peut s'énoncer ainsi : Si et sont deux ensembles finis tels que , alors il n'existe pas d'application injective de dans . La première version du principe fut énoncée par Dirichlet en 1834 sous le nom de Schubfachprinzip (« principe du tiroir ») ; sa première utilisation lui est cependant antérieure d'au moins deux siècles.
Completeness (order theory)In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist. The motivation for considering completeness properties derives from the great importance of suprema (least upper bounds, joins, "") and infima (greatest lower bounds, meets, "") to the theory of partial orders.
Graphe (type abstrait)thumb|upright=1.3|Un graphe orienté, dont les arcs et certains sommets sont « valués » par des couleurs. En informatique, et plus particulièrement en génie logiciel, le type abstrait graphe est la spécification formelle des données qui définissent l'objet mathématique graphe et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'« abstrait » ce type de données car il correspond à un cahier des charges qu'une structure de données concrète doit ensuite implémenter.
Vertex coverIn graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Problème de DirichletEn mathématiques, le problème de Dirichlet est de trouver une fonction harmonique définie sur un ouvert de prolongeant une fonction continue définie sur la frontière de l'ouvert . Ce problème porte le nom du mathématicien allemand Johann Peter Gustav Lejeune Dirichlet. Il n'existe pas toujours de solution au problème de Dirichlet. Dans cette partie, , où est le disque de centre 0 et de rayon 1. Il existe alors une solution au problème de Dirichlet, définie ci-dessous. On a toujours continue sur . On pose : .
Graphe sommet-transitifEn théorie des graphes, un graphe non-orienté est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième. De manière informelle cette propriété indique que tous les sommets jouent exactement le même rôle à l'intérieur du graphe. Un graphe est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième.
Couplage (théorie des graphes)En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
Duality (order theory)In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by Pop or Pd. This dual order Pop is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in Pop if and only if y ≤ x holds in P. It is easy to see that this construction, which can be depicted by flipping the Hasse diagram for P upside down, will indeed yield a partially ordered set. In a broader sense, two partially ordered sets are also said to be duals if they are dually isomorphic, i.