PathwidthIn graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition.
Haven (graph theory)In graph theory, a haven is a certain type of function on sets of vertices in an undirected graph. If a haven exists, it can be used by an evader to win a pursuit–evasion game on the graph, by consulting the function at each step of the game to determine a safe set of vertices to move into. Havens were first introduced by as a tool for characterizing the treewidth of graphs. Their other applications include proving the existence of small separators on minor-closed families of graphs, and characterizing the ends and clique minors of infinite graphs.
Dynamic network analysisDynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA), social simulation and multi-agent systems (MAS) within network science and network theory. Dynamic networks are a function of time (modeled as a subset of the real numbers) to a set of graphs; for each time point there is a graph. This is akin to the definition of dynamical systems, in which the function is from time to an ambient space, where instead of ambient space time is translated to relationships between pairs of vertices.
Carré magique (mathématiques)En mathématiques, un carré magique d’ordre n est composé de n entiers strictement positifs, écrits sous la forme d’un tableau carré. Ces nombres sont disposés de sorte que leurs sommes sur chaque rangée, sur chaque colonne et sur chaque diagonale principale soient égales. On nomme alors constante magique (et parfois densité) la valeur de ces sommes. Un carré magique normal est un cas particulier de carré magique, constitué de tous les nombres entiers de 1 à n, où n est l’ordre du carré.
Stable (théorie des graphes)thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Théorie des graphes extrémauxEn théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
Idéal (théorie des ordres)En mathématiques, un idéal au sens de la théorie des ordres est un sous-ensemble particulier d'un ensemble ordonné. Bien qu'à l'origine ce terme soit issu de la notion algébrique d'idéal d'un anneau, il a été généralisé en une notion distincte. Les idéaux interviennent dans beaucoup de constructions en théorie des ordres, en particulier des treillis. Un idéal d'un ensemble ordonné (E, ≤) est une partie non vide I de E telle que : I est une section commençante, c'est-à-dire que tout minorant d'un élément de I appartient à I ; I est un ensemble ordonné filtrant, c'est-à-dire que deux éléments quelconques de I possèdent toujours un majorant commun dans I.
Combinaison sans répétitionLes combinaisons sont un concept de mathématiques, plus précisément de combinatoire, décrivant les différentes façons de choisir un nombre donné d'objets dans un ensemble de taille donnée, lorsque les objets sont discernables et que l'on ne se soucie pas de l'ordre dans lequel les objets sont placés ou énumérés. Le nom complet, bien que peu usité est combinaison sans répétition de n éléments pris k à k. Autrement dit, les combinaisons de taille k d'un ensemble E de cardinal n sont les sous-ensembles de E qui ont pour taille k.
Théorie spectrale des graphesEn mathématiques, la théorie spectrale des graphes s'intéresse aux rapports entre les spectres des différentes matrices que l'on peut associer à un graphe et ses propriétés. C'est une branche de la théorie algébrique des graphes. On s'intéresse en général à la matrice d'adjacence et à la matrice laplacienne normalisée. Soit un graphe , où désigne l'ensemble des sommets et l'ensemble des arêtes. Le graphe possède sommets, notés et arêtes, notées .